Skip to content

Useful import scripts

OliE edited this page Oct 22, 2025 · 10 revisions

MiFit 'BODY' file --> openScale CSV file

by Martin1887 see https://github.com/oliexdev/openScale/issues/669

#!/usr/bin/python

import argparse
import csv
import datetime

OPENSCALE_HEADER = '"biceps","bone","caliper1","caliper2","caliper3","calories","chest","comment","dateTime","fat","hip","lbm","muscle","neck","thigh","visceralFat","waist","water","weight"'

_MIFIT_BODY_HEADER = 'timestamp,weight,height,bmi,fatRate,bodyWaterRate,boneMass,metabolism,muscleRate,visceralFat,impedance'

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('mifit_BODY_csv_file_path')
    parser.add_argument('output_path')
    
    args = parser.parse_args()
    
    with open(args.mifit_BODY_csv_file_path, 'r') as inp:
        reader = csv.DictReader(inp)
        with open(args.output_path, 'w') as outp:
            writer = csv.DictWriter(outp, OPENSCALE_HEADER.replace('"', '').split(','))
            outp.write(f'{OPENSCALE_HEADER}\n')
            
            for line in reader:
                timestamp = int(line['timestamp'])
                output_date = datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M')
                weight = line['weight']
                writer.writerow({'dateTime': output_date, 'weight': weight})
                

Libra CSV file --> openScale CSV file

initial script by feclare see https://github.com/oliexdev/openScale/issues/28

modified script by abatula see https://github.com/oliexdev/openScale/issues/1050

#!/usr/bin/env python
"""
Simple script to transform libra csv file to openscale format
Optional argument to convert lbs to kg for correct import
Sample usage:
# Does not modify the Libra values
python libra_to_openscale.py Libra_2024-06-04.csv
# Convert Libra values from lbs to kg
python libra_to_openscale.py Libra_2024-06-04.csv lbs
"""
import sys
import csv
from dateutil.parser import parse

if len(sys.argv) < 2:
    print('Missing file to transform')
    sys.exit(1)

if (len(sys.argv) > 2) and (sys.argv[2] == 'lbs'):
    print('Converting Libra data from lbs to kg')
    weight_scalar = 0.453592
else:
    print('Leaving Libra data as-is (kg)')
    weight_scalar = 1


with open(sys.argv[1], 'r') as inputfile:
    r = csv.reader(inputfile, delimiter=";")
    lines = list(r)

with open('openScale_data_Libra.csv', 'w') as outputfile:
    writer = csv.writer(outputfile, delimiter=",")
    for w in lines:
        if len(w) == 0 or w[0].startswith("#"):
            continue
        time = w[0]
        weight_float = float(w[1]) * weight_scalar
        weight = f'{weight_float:.1f}'
        comment = w[5]
        d = parse(time)
        
        writer.writerow([d.strftime('%d.%m.%Y %H:%M'), weight, 0.0, 0.0, 0.0, 0.0, 0.0, comment])

openScale CSV file --> Garmin format

by jowlo see https://github.com/oliexdev/openScale/issues/777

#!/usr/bin/env python

"""
Simple script to transform openscale csv export files to a format accepted by garmin connect at
https://connect.garmin.com/modern/import-data

Note: When importing the language needs to be set to English, otherwise the import fails. 
Set everything to metric units and to YYYY-MM-DD date format.

If you want to compute BMI for the file give your height (im meters) as second parameter.
"""

import sys
import csv
from dateutil.parser import parse

if len(sys.argv) < 2:
    print ("Missing file to transform\n")
    sys.exit(1)

bmi = lambda size: 0;
if len(sys.argv) == 3:
    bmi = lambda weight: weight/(float(sys.argv[2])**2)
        

with open("openScale_garmin_connect_import.csv", "w") as outfile, open(sys.argv[1], "r") as infile:

    reader = csv.DictReader(infile, delimiter=",")
    writer = csv.writer(outfile, delimiter=",")
    
    outfile.write("Body\n")
    outfile.write("Date,Weight,BMI,Fat\n")
    for row in reader:
        writer.writerow([
            parse(row["dateTime"]).strftime('%Y-%m-%d'),
            row["weight"],
            bmi(float(row["weight"])),
            row["fat"]
            ])

Garmin format --> openScale CSV file

by antonmosich see https://github.com/oliexdev/openScale/issues/879

#!/usr/bin/python

import csv
import json
import datetime
import argparse

OPENSCALE_HEADER = '"biceps","bone","caliper1","caliper2","caliper3","calories","chest","comment","dateTime","fat","hip","lbm","muscle","neck","thigh","visceralFat","waist","water","weight"'

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("input")
    parser.add_argument("output")
    args = parser.parse_args()
    with open(args.input, 'r') as input_file:
        input_json = json.load(input_file)
    filtered = [entry for entry in input_json if "weight" in entry]
    with open(args.output, 'w') as output_file:
        writer = csv.DictWriter(output_file, OPENSCALE_HEADER.replace('"', '').split(','))
        output_file.write(f'{OPENSCALE_HEADER}\n')

        for entry in filtered:
            timestamp = datetime.datetime.fromisoformat(entry['weight']['timestampGMT'].ljust(23,'0'))
            weight = entry['weight']['weight'] / 1000
            writer.writerow({'dateTime': timestamp, 'weight': weight})

Google Fit CSV file --> openScale CSV file

by sainigma see https://github.com/oliexdev/openScale/issues/1040

#!/usr/bin/env python
import csv
from dateutil.parser import parse

with open('Daily activity metrics.csv', newline='') as input_csv:
  csv_reader = csv.reader(input_csv, delimiter=',')

  rows = []

  for row in csv_reader:
    rows.append(row)
  
  headers = rows[0]
  data = rows[1:]

  date_idx = headers.index('Date')
  weight_idx = headers.index('Average weight (kg)')

  with open('openscale_data.csv', 'w', newline='', encoding='utf-8') as output_csv:
    output_writer = csv.writer(output_csv, delimiter=',')

    output_writer.writerow(["dateTime", "weight"])

    for fragment in data:
      date = fragment[date_idx]
      weight = fragment[weight_idx]

      if (weight and date):
        output_writer.writerow([parse(date).strftime('%d.%m.%Y 08:00'), round(float(weight), 2)])

Apple Health --> openScale CSV file

by MoralCode see https://github.com/oliexdev/openScale/issues/731

#!/usr/bin/python

# Usage: first run your apple health export through the scripts as documented in https://github.com/markwk/qs_ledger/tree/master/apple_health
# then run this script using the BodyMass.csv from this process to get an OpenScale csv

import argparse
import csv
import datetime
from dateutil.parser import parse as parsedate

OPENSCALE_HEADER = '"biceps","bone","caliper1","caliper2","caliper3","calories","chest","comment","dateTime","fat","hip","lbm","muscle","neck","thigh","visceralFat","waist","water","weight"'
OPENSCALE_HEADER = OPENSCALE_HEADER.replace('"', '')

_APPLE_QUANTIFIEDSELF_BODYMASS_HEADER = 'sourceName,sourceVersion,device,type,unit,creationDate,startDate,endDate,value'

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('apple_bodymass_csv_file_path')
    parser.add_argument('output_path')
    
    args = parser.parse_args()
    
    with open(args.apple_bodymass_csv_file_path, 'r') as inp:
        reader = csv.DictReader(inp)
        with open(args.output_path, 'w') as outp:
            writer = csv.DictWriter(outp, OPENSCALE_HEADER.split(','))
            # outp.write(f'{OPENSCALE_HEADER}\n')
            writer.writeheader()
            
            for line in reader:
                creationDate = line['creationDate']
                output_date = parsedate(creationDate).strftime('%Y-%m-%d %H:%M')
                weight = float(line['value'])
                if line['unit'] == 'lb':
                    # convert to KG
                    weight = weight / 2.2

                comment = "Imported from Apple Health export. Data originally from "
                appname = line["sourceName"]
                # make the apple health app name a little more obvious. by default its just "health"
                if appname == "Health":
                    appname = "Apple Health"
                comment += appname + " app"
                appversion = line["sourceVersion"]
                if appversion != "":
                    comment += " version " + appversion

                writer.writerow({
                    'dateTime': output_date,
                    'weight': "{:.2f}".format(weight),
                    'comment': comment
                })

Health Coach Excel file --> openScale CSV file

by sarika-03 see https://github.com/oliexdev/openScale/issues/728

import pandas as pd
input_file = "HealthCoach.xlsx"
df = pd.read_excel(input_file)
print("Columns in Excel file:", list(df.columns))
df.columns = df.columns.str.strip()
df_openscale = pd.DataFrame()
df_openscale['date'] = pd.to_datetime(
df['Date'].astype(str) + ' ' + df['Time'].astype(str),
dayfirst=True, errors='coerce'
).dt.strftime('%Y-%m-%d %H:%M:%S')
df_openscale['weight'] = df.get('Weight (kg)', None)
df_openscale['fat'] = df.get('Body Fat (%)', None)
df_openscale['fat_top'] = df.get('Body Fat (Top %)', None)
df_openscale['fat_bottom'] = df.get('Body Fat (Bottom %)', None)
df_openscale['water'] = df.get('Water (%)', None)
df_openscale['muscle'] = df.get('Muscle (%)', None)
df_openscale['muscle_top'] = df.get('Muscle (Top %)', None)
df_openscale['muscle_bottom'] = df.get('Muscle (Bottom %)', None)
df_openscale['bone'] = df.get('Bone (kg)', None)
df_openscale['bmi'] = df.get('BMI', None)
df_openscale['bmr'] = df.get('BMR (kcal)', None)
df_openscale['amr'] = df.get('AMR (kcal)', None)
df_openscale['activity_level'] = df.get('Activity Level', None)
output_file = "openScale_ready_data.csv"
df_openscale.to_csv(output_file, index=False)
print(f"\n Conversion complete! File saved as: {output_file}")

Fitbit export folder --> openScale CSV file

by tomjelen see https://github.com/oliexdev/openScale/issues/1192

#!/usr/bin/python

"""
Fitbit to OpenScale Converter
Converts Fitbit weight export JSON files to OpenScale CSV format.

This script processes all weight-*.json files from a Fitbit data export
and converts them to a single CSV file compatible with OpenScale.

Usage:
    python fitbit-to-openscale.py <fitbit_export_folder> <output_csv_file>

Example:
    python fitbit-to-openscale.py "TomJelen/Personal & Account" openscale_weight_data.csv
"""

import argparse
import csv
import datetime
import json
import os
import glob
import sys
from pathlib import Path

# OpenScale CSV header - all supported fields
OPENSCALE_HEADER = '"biceps","bone","caliper1","caliper2","caliper3","calories","chest","comment","dateTime","fat","hip","lbm","muscle","neck","thigh","visceralFat","waist","water","weight"'

def find_weight_files(fitbit_folder):
    """
    Find all weight-*.json files in the Fitbit export folder.

    Args:
        fitbit_folder (str): Path to the Fitbit export folder

    Returns:
        list: List of paths to weight JSON files
    """
    if not os.path.exists(fitbit_folder):
        raise FileNotFoundError(f"Fitbit export folder not found: {fitbit_folder}")

    # Look for weight-*.json files
    pattern = os.path.join(fitbit_folder, "weight-*.json")
    weight_files = glob.glob(pattern)

    if not weight_files:
        raise FileNotFoundError(f"No weight-*.json files found in {fitbit_folder}")

    print(f"Found {len(weight_files)} weight files")
    return sorted(weight_files)

def parse_fitbit_json(file_path):
    """
    Parse a single Fitbit weight JSON file and extract measurements.

    Args:
        file_path (str): Path to the JSON file

    Returns:
        list: List of measurement dictionaries
    """
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            data = json.load(f)

        if not isinstance(data, list):
            print(f"Warning: {file_path} does not contain a list, skipping")
            return []

        measurements = []
        for entry in data:
            if not isinstance(entry, dict):
                continue

            # Extract required fields
            log_id = entry.get('logId')
            weight = entry.get('weight')
            fat = entry.get('fat')

            # Skip entries without essential data
            if log_id is None or weight is None:
                continue

            measurements.append({
                'logId': log_id,
                'weight': weight,
                'fat': fat,
                'bmi': entry.get('bmi'),
                'source': entry.get('source', 'Unknown')
            })

        return measurements

    except json.JSONDecodeError as e:
        print(f"Error parsing JSON file {file_path}: {e}")
        return []
    except Exception as e:
        print(f"Error reading file {file_path}: {e}")
        return []

def convert_timestamp(log_id):
    """
    Convert Fitbit logId (milliseconds since epoch) to OpenScale datetime format.

    Args:
        log_id (int): Fitbit logId timestamp in milliseconds

    Returns:
        str: Formatted datetime string (YYYY-MM-DD HH:MM)
    """
    try:
        # Convert milliseconds to seconds
        timestamp_seconds = log_id / 1000.0
        dt = datetime.datetime.fromtimestamp(timestamp_seconds)
        return dt.strftime('%Y-%m-%d %H:%M')
    except (ValueError, OSError) as e:
        print(f"Error converting timestamp {log_id}: {e}")
        return None

def process_all_weight_data(fitbit_folder):
    """
    Process all weight JSON files and return sorted measurements.

    Args:
        fitbit_folder (str): Path to the Fitbit export folder

    Returns:
        list: List of all measurements sorted by datetime
    """
    weight_files = find_weight_files(fitbit_folder)
    all_measurements = []

    for file_path in weight_files:
        print(f"Processing {os.path.basename(file_path)}...")
        measurements = parse_fitbit_json(file_path)
        all_measurements.extend(measurements)

    print(f"Total measurements found: {len(all_measurements)}")

    # Convert timestamps and filter out invalid entries
    valid_measurements = []
    for measurement in all_measurements:
        datetime_str = convert_timestamp(measurement['logId'])
        if datetime_str:
            measurement['dateTime'] = datetime_str
            valid_measurements.append(measurement)

    print(f"Valid measurements after timestamp conversion: {len(valid_measurements)}")

    # Sort by datetime
    valid_measurements.sort(key=lambda x: x['dateTime'])

    return valid_measurements

def write_openscale_csv(measurements, output_path):
    """
    Write measurements to OpenScale CSV format.

    Note: Fitbit exports weight data in pounds regardless of user profile settings.
    This function converts pounds to kilograms for OpenScale compatibility.

    Args:
        measurements (list): List of measurement dictionaries
        output_path (str): Path to output CSV file
    """
    # Define the field names in the order they appear in the header
    fieldnames = ['biceps', 'bone', 'caliper1', 'caliper2', 'caliper3', 'calories',
                  'chest', 'comment', 'dateTime', 'fat', 'hip', 'lbm', 'muscle',
                  'neck', 'thigh', 'visceralFat', 'waist', 'water', 'weight']

    try:
        with open(output_path, 'w', newline='', encoding='utf-8') as csvfile:
            # Write the header exactly as OpenScale expects it
            csvfile.write(f'{OPENSCALE_HEADER}\n')

            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

            for measurement in measurements:
                # Create a row with only the fields we have data for
                row = {field: '' for field in fieldnames}  # Initialize all fields as empty

                # Fill in the fields we have data for
                row['dateTime'] = measurement['dateTime']

                # Convert weight from pounds to kilograms
                # Fitbit exports weight in pounds regardless of user profile settings
                weight_lbs = float(measurement['weight'])
                weight_kg = weight_lbs / 2.20462  # Convert pounds to kilograms
                row['weight'] = f'{weight_kg:.2f}'  # Round to 2 decimal places

                # Add fat percentage if available
                if measurement.get('fat') is not None:
                    row['fat'] = measurement['fat']

                # Add a comment with source information
                source = measurement.get('source', 'Fitbit')
                row['comment'] = f'Imported from {source} (converted from lbs)'

                writer.writerow(row)

        print(f"Successfully wrote {len(measurements)} measurements to {output_path}")

    except Exception as e:
        print(f"Error writing CSV file: {e}")
        raise

def main():
    """Main function with argument parsing."""
    parser = argparse.ArgumentParser(
        description='Convert Fitbit weight export JSON files to OpenScale CSV format',
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  python fitbit-to-openscale.py "TomJelen/Personal & Account" openscale_weight_data.csv
  python fitbit-to-openscale.py /path/to/fitbit/export output.csv
        """
    )

    parser.add_argument('fitbit_folder',
                       help='Path to Fitbit export folder containing weight-*.json files')
    parser.add_argument('output_csv',
                       help='Path to output CSV file for OpenScale')

    args = parser.parse_args()

    try:
        print("Fitbit to OpenScale Converter")
        print("=" * 40)
        print(f"Input folder: {args.fitbit_folder}")
        print(f"Output file: {args.output_csv}")
        print()

        # Process all weight data
        measurements = process_all_weight_data(args.fitbit_folder)

        if not measurements:
            print("No valid measurements found. Exiting.")
            sys.exit(1)

        # Write to OpenScale CSV format
        write_openscale_csv(measurements, args.output_csv)

        print()
        print("Conversion completed successfully!")
        print(f"You can now import {args.output_csv} into OpenScale.")

    except Exception as e:
        print(f"Error: {e}")
        sys.exit(1)

if __name__ == '__main__':
    main()
Clone this wiki locally