forked from ggml-org/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 5
Vulkan installation instructions template (on unix) #1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…-org#5240) * llama : remove LLAMA_MAX_DEVICES from llama.h ggml-ci * Update llama.cpp Co-authored-by: slaren <[email protected]> * server : remove LLAMA_MAX_DEVICES ggml-ci * llama : remove LLAMA_SUPPORTS_GPU_OFFLOAD ggml-ci * train : remove LLAMA_SUPPORTS_GPU_OFFLOAD * readme : add deprecation notice * readme : change deprecation notice to "remove" and fix url * llama : remove gpu includes from llama.h ggml-ci --------- Co-authored-by: slaren <[email protected]>
* build vulkan as object * vulkan ci
* support InternLM2 inference * add add_space_prefix KV pair
ngxson
pushed a commit
that referenced
this pull request
Aug 4, 2024
* [example] batched-bench "segmentation fault" When `llama-batched-bench` is invoked _without_ setting `-npl`, "number of parallel prompts", it segfaults. The segfault is caused by invoking `max_element()` on a zero-length vector, `n_pl` This commit addresses that by first checking to see if the number of parallel prompts is zero, and if so sets the maximum sequence size to 1; otherwise, sets it to the original, the result of `max_element()`. Fixes, when running `lldb build/bin/llama-batched-bench -- -m models/Meta-Llama-3-8B.gguf` ``` * thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x0) frame #0: 0x000000010000366c llama-batched-bench`main(argc=3, argv=0x000000016fdff268) at batched-bench.cpp:72:28 69 llama_context_params ctx_params = llama_context_params_from_gpt_params(params); 70 71 // ensure enough sequences are available -> 72 ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end()); ``` * Update examples/batched-bench/batched-bench.cpp Co-authored-by: compilade <[email protected]> --------- Co-authored-by: Georgi Gerganov <[email protected]> Co-authored-by: compilade <[email protected]>
ngxson
added a commit
that referenced
this pull request
Aug 5, 2025
* oai moe * compat with new checkpoint * add attn sink impl * add rope scaling yarn * logits match with latest transformers code * wip chat template * rm trailing space * use ggml_scale_bias * rm redundant is_swa_all * convert interleaved gate_up * graph : fix activation function to match reference (#7) * vocab : handle o200k_harmony special tokens * ggml : add attention sinks support (#1) * llama : add attn sinks * ggml : add attn sinks * cuda : add attn sinks * vulkan : add support for sinks in softmax remove unnecessary return * ggml : add fused swiglu_oai op (#11) * ggml : add fused swiglu_oai op * Update ggml/src/ggml-cpu/ops.cpp Co-authored-by: Georgi Gerganov <[email protected]> * update CUDA impl * cont : metal impl * add vulkan impl * test-backend-ops : more test cases, clean up * llama : remove unfused impl * remove extra lines --------- Co-authored-by: Georgi Gerganov <[email protected]> --------- Co-authored-by: slaren <[email protected]> * repack mxfp4 upon conversion * clean up a bit * enable thinking * add quick hack to render only some special tokens * fix bf16 conversion * remove vocab hack * webui ok * support chat parsing for gpt-oss * fix webui * direct mapping mxfp4, FINALLY * force using mxfp4 * properly use lazy tensor * ggml : add mxfp4 ggml : use e8m0 conversion instead of powf Co-authored-by: Diego Devesa <[email protected]> change kvalues_mxfp4 table to match e2m1 (#6) metal : remove quantization for now (not used) cuda : fix disabled CUDA graphs due to ffn moe bias vulkan : add support for mxfp4 cont : add cm2 dequant * ggml : add ggml_add_id (#13) * ggml : add ggml_add_id * add cuda impl * llama : add weight support check for add_id * perf opt * add vulkan impl * rename cuda files * add metal impl * allow in-place ggml_add_id * llama : keep biases on CPU with --cpu-moe * llama : fix compile error ggml-ci * cuda : add fallback for __nv_cvt_e8m0_to_bf16raw ggml-ci * cleanup ggml-ci * sycl : fix supports_op for MXFP4 ggml-ci * fix Unknown reasoning format * ggml-cpu : fix AVX build ggml-ci * fix hip build ggml-ci * cuda : add mxfp4 dequantization support for cuBLAS ggml-ci * ggml-cpu : fix mxfp4 fallback definitions for some architectures ggml-ci * cuda : fix version required for __nv_cvt_e8m0_to_bf16raw --------- Co-authored-by: Xuan Son Nguyen <[email protected]> Co-authored-by: slaren <[email protected]>
ngxson
pushed a commit
that referenced
this pull request
Sep 17, 2025
…gml-org#16038) Initalizing RESERVED_NAME in is_reserved_name() is not thread safe and leads to corrupted memory when used from multiple threads as can be seen in the asan trace below. This fixes the initialization to make it thread-safe. #0 0x000100abd018 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) __hash_table:1565 #1 0x000100ab0320 in SchemaConverter::visit(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) json-schema-to-grammar.cpp:802 #2 0x000100aafc48 in std::__1::__function::__func<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2, std::__1::allocator<build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&)::$_2>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> (std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319 #3 0x000100a2c938 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&), std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0::operator()(common_grammar_builder const&) const::'lambda'(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>, void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)>::operator()(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&) function.h:319 #4 0x000100a139f8 in foreach_function(nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&, std::__1::function<void (nlohmann::json_abi_v3_12_0::basic_json<nlohmann::json_abi_v3_12_0::ordered_map, std::__1::vector, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, bool, long long, unsigned long long, double, std::__1::allocator, nlohmann::json_abi_v3_12_0::adl_serializer, std::__1::vector<unsigned char, std::__1::allocator<unsigned char>>, void> const&)> const&) chat.cpp:762 #5 0x000100a2a7f4 in std::__1::__function::__func<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0, std::__1::allocator<common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool)::$_0>, void (common_grammar_builder const&)>::operator()(common_grammar_builder const&) function.h:319 #6 0x000100aa98f4 in build_grammar(std::__1::function<void (common_grammar_builder const&)> const&, common_grammar_options const&) json-schema-to-grammar.cpp:982 #7 0x0001009c9314 in common_chat_params_init_llama_3_x(minja::chat_template const&, templates_params const&, bool) chat.cpp:1110 #8 0x0001009b8afc in common_chat_templates_apply_jinja(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:1992 #9 0x0001009b533c in common_chat_templates_apply(common_chat_templates const*, common_chat_templates_inputs const&) chat.cpp:2074 #10 0x000100810120 in llamacpp_apply_chat_template+0x724 (predict_oai-98384e17fb94e863:arm64+0x100090120) ... ==45482==Register values: x[0] = 0x00006020004147f8 x[1] = 0x00006080000013c8 x[2] = 0x0000000000000000 x[3] = 0x0000604006289738 x[4] = 0x0000000000000002 x[5] = 0x0000000000000001 x[6] = 0x04034000004b4000 x[7] = 0x0000000000000001 x[8] = 0xbebebebebebebebe x[9] = 0x17d7d7d7d7d7d7d7 x[10] = 0x00000c04000828ff x[11] = 0x0000000000000001 x[12] = 0x000000002018d383 x[13] = 0x0000000000000000 x[14] = 0xfa0000000000fafa x[15] = 0x000010700001ffff x[16] = 0x000000019dc012c0 x[17] = 0x00000001021284f8 x[18] = 0x0000000000000000 x[19] = 0x00000001700acdc0 x[20] = 0x0000000000000002 x[21] = 0x000000002018d384 x[22] = 0x16dd16fd2e731151 x[23] = 0x0000007000020000 x[24] = 0x0000000100c69c08 x[25] = 0x0000000100c69c20 x[26] = 0x00006080000013c7 x[27] = 0x0000000100c69c00 x[28] = 0x00000001700acd60 fp = 0x00000001700aceb0 lr = 0x0000000100abce30 sp = 0x00000001700acd60 AddressSanitizer can not provide additional info. SUMMARY: AddressSanitizer: SEGV __hash_table:1565 in std::__1::pair<std::__1::__hash_iterator<std::__1::__hash_node<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, void*>*>, bool> std::__1::__hash_table<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::hash<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::equal_to<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>>>::__emplace_unique_key_args<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) Thread T5 created by T0 here: #0 0x0001020b99d4 in pthread_create+0x5c (libclang_rt.asan_osx_dynamic.dylib:arm64e+0x359d4) #1 0x000100873910 in std::sys::pal::unix::thread::Thread::new::h77254fdd87a28e05+0x118 (predict_oai-98384e17fb94e863:arm64+0x1000f3910) #2 0x0001007c7a1c in test::run_test::haeb3c2bcd5ed6cf6+0x76c (predict_oai-98384e17fb94e863:arm64+0x100047a1c) #3 0x0001007aedb0 in test::console::run_tests_console::he9d142d704f3a986+0x149c (predict_oai-98384e17fb94e863:arm64+0x10002edb0) #4 0x0001007c5758 in test::test_main::hf86a5e20735245b9+0x118 (predict_oai-98384e17fb94e863:arm64+0x100045758) #5 0x0001007c5da0 in test::test_main_static::h61ee9c8fd30abca0+0x54 (predict_oai-98384e17fb94e863:arm64+0x100045da0) ... ==45482==ABORTING
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
feel free to edit