Skip to content
This repository was archived by the owner on Nov 16, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/python/nimbusml/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -2002,7 +2002,7 @@ def predict_proba(self, X, verbose=0, **params):

:return: array, shape = [n_samples, n_classes]
"""
if hasattr(self, 'steps') and len(self.steps) > 0:
if hasattr(self, 'steps') and self.steps:
last_node = self.last_node
last_node._check_implements_method('predict_proba')

Expand Down Expand Up @@ -2042,7 +2042,7 @@ def decision_function(self, X, verbose=0, **params):
:return: array, shape=(n_samples,) if n_classes == 2 else (
n_samples, n_classes)
"""
if hasattr(self, 'steps') and len(self.steps) > 0:
if hasattr(self, 'steps') and self.steps:
last_node = self.last_node
last_node._check_implements_method('decision_function')

Expand Down
46 changes: 46 additions & 0 deletions src/python/nimbusml/tests/pipeline/test_pipeline_combining.py
Original file line number Diff line number Diff line change
Expand Up @@ -406,6 +406,52 @@ def test_combine_with_classifier_trained_with_filedatastream(self):
self.assertTrue(result_1.equals(result_2))


def test_combined_models_support_predict_proba(self):
path = get_dataset('infert').as_filepath()

data = FileDataStream.read_csv(path)

transform = OneHotVectorizer(columns={'edu': 'education'})
df = transform.fit_transform(data, as_binary_data_stream=True)

feature_cols = ['parity', 'edu', 'age', 'induced', 'spontaneous', 'stratum', 'pooled.stratum']
predictor = LogisticRegressionBinaryClassifier(feature=feature_cols, label='case')
predictor.fit(df)

data = FileDataStream.read_csv(path)
df = transform.transform(data, as_binary_data_stream=True)
result_1 = predictor.predict_proba(df)

data = FileDataStream.read_csv(path)
combined_pipeline = Pipeline.combine_models(transform, predictor)
result_2 = combined_pipeline.predict_proba(data)

self.assertTrue(np.array_equal(result_1, result_2))


def test_combined_models_support_decision_function(self):
path = get_dataset('infert').as_filepath()

data = FileDataStream.read_csv(path)

transform = OneHotVectorizer(columns={'edu': 'education'})
df = transform.fit_transform(data, as_binary_data_stream=True)

feature_cols = ['parity', 'edu', 'age', 'induced', 'spontaneous', 'stratum', 'pooled.stratum']
predictor = LogisticRegressionBinaryClassifier(feature=feature_cols, label='case')
predictor.fit(df)

data = FileDataStream.read_csv(path)
df = transform.transform(data, as_binary_data_stream=True)
result_1 = predictor.decision_function(df)

data = FileDataStream.read_csv(path)
combined_pipeline = Pipeline.combine_models(transform, predictor)
result_2 = combined_pipeline.decision_function(data)

self.assertTrue(np.array_equal(result_1, result_2))


if __name__ == '__main__':
unittest.main()