Skip to content
This repository was archived by the owner on Mar 21, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
42072a6
extending _get_transforms to accept new datasets
vale-salvatelli Aug 24, 2021
a8ebe13
expand get_cxr_ssl_transform to avoid hidden channel expansion
vale-salvatelli Aug 24, 2021
c2c5fe7
drop_last set as parameter of InnerEyeVisionDataModule
vale-salvatelli Aug 24, 2021
682d2ab
drop_last is now a SSLContainer parameter
vale-salvatelli Aug 24, 2021
68cb45c
Updating Changelog
vale-salvatelli Aug 24, 2021
bdf4ca6
Fix PEP8
vale-salvatelli Aug 24, 2021
fcf27ed
fixing mypy error
vale-salvatelli Aug 25, 2021
bccdb6b
still one fix
vale-salvatelli Aug 25, 2021
68ae373
Merge branch 'main' into vsalva/generalize_ssl
vale-salvatelli Aug 25, 2021
26522c8
Updating to main
vale-salvatelli Aug 25, 2021
68dd10c
generalize function names for readibility
vale-salvatelli Aug 26, 2021
d72a36b
Updating documentation
vale-salvatelli Aug 26, 2021
daeaab1
Updating documentation
vale-salvatelli Aug 26, 2021
6509e4f
removing unexpected changes in amlignore
vale-salvatelli Aug 26, 2021
bc5a81c
Adding test
vale-salvatelli Aug 26, 2021
fc22df9
Adding bits to the test
vale-salvatelli Aug 26, 2021
d74eaf4
committing to switch branch, test_transform pipeline still to be fixed
vale-salvatelli Sep 1, 2021
0cc7893
fixing test
vale-salvatelli Sep 14, 2021
c474713
remove TODO
vale-salvatelli Sep 14, 2021
7cf4459
fixing conlicts
vale-salvatelli Sep 14, 2021
9cda074
fixing flake8
vale-salvatelli Sep 14, 2021
7fa0dbd
fixing flake8 for real
vale-salvatelli Sep 14, 2021
1b978dd
fixing more flake8
vale-salvatelli Sep 14, 2021
7af305c
docstring changed
vale-salvatelli Sep 15, 2021
0c255a5
docstring changed, thanks Mel
vale-salvatelli Sep 15, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ jobs that run in AzureML.

### Changed
- ([#531](https://github.com/microsoft/InnerEye-DeepLearning/pull/531)) Updated PL to 1.3.8, torchmetrics and pl-bolts and changed relevant metrics and SSL code API.
- ([#555](https://github.com/microsoft/InnerEye-DeepLearning/pull/555)) Make the SSLContainer compatible with new datasets
- ([#533](https://github.com/microsoft/InnerEye-DeepLearning/pull/533)) Better defaults for inference on ensemble children.
- ([#536](https://github.com/microsoft/InnerEye-DeepLearning/pull/536)) Inference will not run on the validation set by default, this can be turned on
via the `--inference_on_val_set` flag.
Expand Down
8 changes: 5 additions & 3 deletions InnerEye/ML/SSL/datamodules_and_datasets/datamodules.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ def __init__(self,
num_workers: int = 6,
batch_size: int = 32,
seed: int = 42,
drop_last: bool = True,
*args: Any, **kwargs: Any) -> None:
"""
Wrapper around VisionDatamodule to load torchvision dataset into a pytorch-lightning module.
Expand All @@ -42,16 +43,17 @@ def __init__(self,
:param val_transforms: transforms to use at validation time
:param data_dir: data directory where to find the data
:param val_split: proportion of training dataset to use for validation
:param num_workers: number of processes for dataloaders.
:param batch_size: batch size for training & validation.
:param num_workers: number of processes for dataloaders
:param batch_size: batch size for training & validation
:param seed: random seed for dataset splitting
:param drop_last: bool, if true it drops the last incomplete batch
"""
data_dir = data_dir if data_dir is not None else os.getcwd()
super().__init__(data_dir=data_dir,
val_split=val_split,
num_workers=num_workers,
batch_size=batch_size,
drop_last=True,
drop_last=drop_last,
train_transforms=train_transforms,
val_transforms=val_transforms,
seed=seed,
Expand Down
23 changes: 14 additions & 9 deletions InnerEye/ML/SSL/datamodules_and_datasets/transforms_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,16 +10,17 @@
from pl_bolts.models.self_supervised.simclr import SimCLRTrainDataTransform
from yacs.config import CfgNode

from InnerEye.ML.augmentations.transform_pipeline import create_cxr_transforms_from_config
from InnerEye.ML.augmentations.transform_pipeline import create_transforms_from_config


def get_cxr_ssl_transforms(config: CfgNode,
return_two_views_per_sample: bool,
use_training_augmentations_for_validation: bool = False) -> Tuple[Any, Any]:
def get_ssl_transforms_from_config(config: CfgNode,
return_two_views_per_sample: bool,
use_training_augmentations_for_validation: bool = False,
expand_channels: bool = True) -> Tuple[Any, Any]:
"""
Returns training and validation transforms for CXR.
Transformations are constructed in the following way:
1. Construct the pipeline of augmentations in create_chest_xray_transform (e.g. resize, flip, affine) as defined
1. Construct the pipeline of augmentations in create_transform_from_config (e.g. resize, flip, affine) as defined
by the config.
2. If we just want to construct the transformation pipeline for a classification model or for the linear evaluator
of the SSL module, return this pipeline.
Expand All @@ -29,14 +30,18 @@ def get_cxr_ssl_transforms(config: CfgNode,

:param config: configuration defining which augmentations to apply as well as their intensities.
:param return_two_views_per_sample: if True the resulting transforms will return two versions of each sample they
are called on. If False, simply return one transformed version of the sample.
are called on. If False, simply return one transformed version of the sample centered and cropped.
:param use_training_augmentations_for_validation: If True, use augmentation at validation time too.
This is required for SSL validation loss to be meaningful. If False, only apply basic processing step
(no augmentations)
:param expand_channels: if True the expand channel transformation from InnerEye.ML.augmentations.image_transforms
will be added to the transformation passed through the config. This is needed for single channel images as CXR.
"""
train_transforms = create_cxr_transforms_from_config(config, apply_augmentations=True)
val_transforms = create_cxr_transforms_from_config(config,
apply_augmentations=use_training_augmentations_for_validation)
train_transforms = create_transforms_from_config(config, apply_augmentations=True,
expand_channels=expand_channels)
val_transforms = create_transforms_from_config(config,
apply_augmentations=use_training_augmentations_for_validation,
expand_channels=expand_channels)
if return_two_views_per_sample:
train_transforms = DualViewTransformWrapper(train_transforms) # type: ignore
val_transforms = DualViewTransformWrapper(val_transforms) # type: ignore
Expand Down
36 changes: 26 additions & 10 deletions InnerEye/ML/SSL/lightning_containers/ssl_container.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
from InnerEye.ML.SSL.datamodules_and_datasets.datamodules import CombinedDataModule, InnerEyeVisionDataModule
from InnerEye.ML.SSL.datamodules_and_datasets.transforms_utils import InnerEyeCIFARLinearHeadTransform, \
InnerEyeCIFARTrainTransform, \
get_cxr_ssl_transforms
get_ssl_transforms_from_config
from InnerEye.ML.SSL.encoders import get_encoder_output_dim
from InnerEye.ML.SSL.lightning_modules.byol.byol_module import BYOLInnerEye
from InnerEye.ML.SSL.lightning_modules.simclr_module import SimCLRInnerEye
Expand Down Expand Up @@ -96,6 +96,7 @@ class SSLContainer(LightningContainer):
learning_rate_linear_head_during_ssl_training = param.Number(default=1e-4,
doc="Learning rate for linear head training during "
"SSL training.")
drop_last = param.Boolean(default=True, doc="If True drops the last incomplete batch")

def setup(self) -> None:
from InnerEye.ML.SSL.lightning_containers.ssl_image_classifier import SSLClassifierContainer
Expand Down Expand Up @@ -166,8 +167,8 @@ def create_model(self) -> LightningModule:
f"Found {self.ssl_training_type.value}")
model.hparams.update({'ssl_type': self.ssl_training_type.value,
"num_classes": self.data_module.num_classes})
self.encoder_output_dim = get_encoder_output_dim(model, self.data_module)

self.encoder_output_dim = get_encoder_output_dim(model, self.data_module)
return model

def get_data_module(self) -> InnerEyeDataModuleTypes:
Expand All @@ -186,7 +187,7 @@ def _create_ssl_data_modules(self, is_ssl_encoder_module: bool) -> InnerEyeVisio
"""
Returns torch lightning data module for encoder or linear head

:param is_ssl_encoder_module: whether to return the data module for SSL training or for linear heard. If true,
:param is_ssl_encoder_module: whether to return the data module for SSL training or for linear head. If true,
:return transforms with two views per sample (batch like (img_v1, img_v2, label)). If False, return only one
view per sample but also return the index of the sample in the dataset (to make sure we don't use twice the same
batch in one training epoch (batch like (index, img_v1, label), as classifier dataloader expected to be shorter
Expand All @@ -209,7 +210,8 @@ def _create_ssl_data_modules(self, is_ssl_encoder_module: bool) -> InnerEyeVisio
data_dir=str(datamodule_args.dataset_path),
batch_size=batch_size_per_gpu,
num_workers=self.num_workers,
seed=self.random_seed)
seed=self.random_seed,
drop_last=self.drop_last)
dm.prepare_data()
dm.setup()
return dm
Expand All @@ -223,25 +225,39 @@ def _get_transforms(self, augmentation_config: Optional[CfgNode],
examples.
:param dataset_name: name of the dataset, value has to be in SSLDatasetName, determines which transformation
pipeline to return.
:param is_ssl_encoder_module: if True the transformation pipeline will yield two version of the image it is
applied on. If False, return only one transformation.
:param is_ssl_encoder_module: if True the transformation pipeline will yield two versions of the image it is
applied on and it applies the training transformations also at validation time. Note that if your transformation
does not contain any randomness, the pipeline will return two identical copies. If False, it will return only one
transformation.
:return: training transformation pipeline and validation transformation pipeline.
"""
if dataset_name in [SSLDatasetName.RSNAKaggleCXR.value,
SSLDatasetName.NIHCXR.value,
SSLDatasetName.CheXpert.value,
SSLDatasetName.Covid.value]:
assert augmentation_config is not None
train_transforms, val_transforms = get_cxr_ssl_transforms(augmentation_config,
return_two_views_per_sample=is_ssl_encoder_module,
use_training_augmentations_for_validation=is_ssl_encoder_module)
train_transforms, val_transforms = get_ssl_transforms_from_config(
augmentation_config,
return_two_views_per_sample=is_ssl_encoder_module,
use_training_augmentations_for_validation=is_ssl_encoder_module
)
elif dataset_name in [SSLDatasetName.CIFAR10.value, SSLDatasetName.CIFAR100.value]:
train_transforms = \
InnerEyeCIFARTrainTransform(32) if is_ssl_encoder_module else InnerEyeCIFARLinearHeadTransform(32)
val_transforms = \
InnerEyeCIFARTrainTransform(32) if is_ssl_encoder_module else InnerEyeCIFARLinearHeadTransform(32)
elif augmentation_config:
train_transforms, val_transforms = get_ssl_transforms_from_config(
augmentation_config,
return_two_views_per_sample=is_ssl_encoder_module,
use_training_augmentations_for_validation=is_ssl_encoder_module,
expand_channels=False,
)
logging.warning(f"Dataset {dataset_name} unknown. The config will be consumed by "
f"get_ssl_transforms() to create the augmentation pipeline, make sure "
f"the transformations in your configs are compatible. ")
else:
raise ValueError(f"Dataset {dataset_name} unknown.")
raise ValueError(f"Dataset {dataset_name} unknown and no config has been passed.")

return train_transforms, val_transforms

Expand Down
16 changes: 11 additions & 5 deletions InnerEye/ML/augmentations/transform_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,16 +86,22 @@ def __call__(self, data: ImageData) -> torch.Tensor:
return self.transform_image(data)


def create_cxr_transforms_from_config(config: CfgNode,
apply_augmentations: bool) -> ImageTransformationPipeline:
def create_transforms_from_config(config: CfgNode,
apply_augmentations: bool,
expand_channels: bool = True) -> ImageTransformationPipeline:
"""
Defines the image transformations pipeline used in Chest-Xray datasets. Can be used for other types of
images data, type of augmentations to use and strength are expected to be defined in the config.
Defines the image transformations pipeline from a config file. It has been designed for Chest X-Ray
images but it can be used for other types of images data, type of augmentations to use and strength are
expected to be defined in the config. The channel expansion is needed for gray images.
:param config: config yaml file fixing strength and type of augmentation to apply
:param apply_augmentations: if True return transformation pipeline with augmentations. Else,
disable augmentations i.e. only resize and center crop the image.
:param expand_channels: if True the expand channel transformation from InnerEye.ML.augmentations.image_transforms
will be added to the transformation passed through the config. This is needed for single channel images as CXR.
"""
transforms: List[Any] = [ExpandChannels()]
transforms: List[Any] = []
if expand_channels:
transforms.append(ExpandChannels())
if apply_augmentations:
if config.augmentation.use_random_affine:
transforms.append(RandomAffine(
Expand Down
7 changes: 4 additions & 3 deletions InnerEye/ML/configs/classification/CovidModel.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,8 @@
from InnerEye.ML.SSL.lightning_containers.ssl_container import EncoderName
from InnerEye.ML.SSL.lightning_modules.ssl_classifier_module import SSLClassifier
from InnerEye.ML.SSL.utils import create_ssl_image_classifier, load_yaml_augmentation_config
from InnerEye.ML.augmentations.transform_pipeline import create_cxr_transforms_from_config
from InnerEye.ML.augmentations.transform_pipeline import create_transforms_from_config

from InnerEye.ML.common import ModelExecutionMode

from InnerEye.ML.configs.ssl.CXR_SSL_configs import path_linear_head_augmentation_cxr
Expand Down Expand Up @@ -137,9 +138,9 @@ def get_model_train_test_dataset_splits(self, dataset_df: pd.DataFrame) -> Datas
def get_image_transform(self) -> ModelTransformsPerExecutionMode:
config = load_yaml_augmentation_config(path_linear_head_augmentation_cxr)
train_transforms = Compose(
[DicomPreparation(), create_cxr_transforms_from_config(config, apply_augmentations=True)])
[DicomPreparation(), create_transforms_from_config(config, apply_augmentations=True)])
val_transforms = Compose(
[DicomPreparation(), create_cxr_transforms_from_config(config, apply_augmentations=False)])
[DicomPreparation(), create_transforms_from_config(config, apply_augmentations=False)])

return ModelTransformsPerExecutionMode(train=train_transforms,
val=val_transforms,
Expand Down
52 changes: 30 additions & 22 deletions Tests/ML/augmentations/test_transform_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,14 @@
import PIL
import pytest
import torch
from torchvision.transforms import CenterCrop, ColorJitter, RandomAffine, RandomErasing, RandomHorizontalFlip, \
RandomResizedCrop, Resize, ToTensor
from torchvision.transforms import (CenterCrop, ColorJitter, RandomAffine, RandomErasing, RandomHorizontalFlip,
RandomResizedCrop, Resize, ToTensor)
from torchvision.transforms.functional import to_tensor

from InnerEye.ML.augmentations.image_transforms import AddGaussianNoise, ElasticTransform, ExpandChannels, RandomGamma
from InnerEye.ML.augmentations.image_transforms import (AddGaussianNoise, ElasticTransform,
ExpandChannels, RandomGamma)
from InnerEye.ML.augmentations.transform_pipeline import ImageTransformationPipeline, \
create_cxr_transforms_from_config
create_transforms_from_config

from Tests.SSL.test_data_modules import cxr_augmentation_config

Expand All @@ -31,7 +32,6 @@
test_4d_scan_as_tensor = torch.ones([5, 4, *image_size]) * 255.
test_4d_scan_as_tensor[..., 10:15, 10:20] = 1


@pytest.mark.parametrize("use_different_transformation_per_channel", [True, False])
def test_torchvision_on_various_input(use_different_transformation_per_channel: bool) -> None:
"""
Expand Down Expand Up @@ -107,17 +107,16 @@ def test_custom_tf_on_various_input(use_different_transformation_per_channel: bo
assert torch.isclose(transformed[0, 0], transformed[1, 1]).all() != use_different_transformation_per_channel


def test_create_transform_pipeline_from_config() -> None:
@pytest.mark.parametrize("expand_channels", [True, False])
def test_create_transform_pipeline_from_config(expand_channels: bool) -> None:
"""
Tests that the pipeline returned by create_transform_pipeline_from_config returns the expected transformation.
"""
transformation_pipeline = create_cxr_transforms_from_config(cxr_augmentation_config, apply_augmentations=True)
transformation_pipeline = create_transforms_from_config(cxr_augmentation_config, apply_augmentations=True,
expand_channels=expand_channels)
fake_cxr_as_array = np.ones([256, 256]) * 255.
fake_cxr_as_array[100:150, 100:200] = 1
fake_cxr_image = PIL.Image.fromarray(fake_cxr_as_array).convert("L")

all_transforms = [ExpandChannels(),
RandomAffine(degrees=180, translate=(0, 0), shear=40),
all_transforms = [RandomAffine(degrees=180, translate=(0, 0), shear=40),
RandomResizedCrop(scale=(0.4, 1.0), size=256),
RandomHorizontalFlip(p=0.5),
RandomGamma(scale=(0.5, 1.5)),
Expand All @@ -128,23 +127,28 @@ def test_create_transform_pipeline_from_config() -> None:
AddGaussianNoise(std=0.05, p_apply=0.5)
]

if expand_channels:
all_transforms.insert(0, ExpandChannels())
# expand channels is used for single-channel input images
fake_image = PIL.Image.fromarray(fake_cxr_as_array).convert("L")
# In the pipeline the image is converted to tensor before applying the transformations. Do the same here.
image = ToTensor()(fake_image).reshape([1, 1, 256, 256])
else:
fake_3d_array = np.dstack([fake_cxr_as_array, fake_cxr_as_array, fake_cxr_as_array])
fake_image = PIL.Image.fromarray(fake_3d_array.astype(np.uint8)).convert("RGB")
# In the pipeline the image is converted to tensor before applying the transformations. Do the same here.
image = ToTensor()(fake_image).reshape([1, 3, 256, 256])

np.random.seed(3)
torch.manual_seed(3)
random.seed(3)

transformed_image = transformation_pipeline(fake_cxr_image)
transformed_image = transformation_pipeline(fake_image)
assert isinstance(transformed_image, torch.Tensor)
# Expected pipeline
image = np.ones([256, 256]) * 255.
image[100:150, 100:200] = 1
image = PIL.Image.fromarray(image).convert("L")
# In the pipeline the image is converted to tensor before applying the transformations. Do the same here.
image = ToTensor()(image).reshape([1, 1, 256, 256])

# Expected pipeline
np.random.seed(3)
torch.manual_seed(3)
random.seed(3)

expected_transformed = image
for t in all_transforms:
expected_transformed = t(expected_transformed)
Expand All @@ -154,10 +158,14 @@ def test_create_transform_pipeline_from_config() -> None:
assert torch.isclose(expected_transformed, transformed_image).all()

# Test the evaluation pipeline
transformation_pipeline = create_cxr_transforms_from_config(cxr_augmentation_config, apply_augmentations=False)
transformation_pipeline = create_transforms_from_config(cxr_augmentation_config, apply_augmentations=False,
expand_channels=expand_channels)
transformed_image = transformation_pipeline(image)
assert isinstance(transformed_image, torch.Tensor)
all_transforms = [ExpandChannels(), Resize(size=256), CenterCrop(size=224)]
all_transforms = [Resize(size=256), CenterCrop(size=224)]
if expand_channels:
all_transforms.insert(0, ExpandChannels())

expected_transformed = image
for t in all_transforms:
expected_transformed = t(expected_transformed)
Expand Down
Loading