-
Notifications
You must be signed in to change notification settings - Fork 170
Closed
Description
🐛 Describe the bug
I seem to intermittently get the following error when executing the following piece of code to download torchtext datasets from Google drive.
>>> from torchtext.datasets.amazonreviewfull import AmazonReviewFull
>>> dataset = AmazonReviewFull(split="train")
>>> next(iter(dataset))
Stack trace
File "/home/nayef211/.local/lib/python3.8/site-packages/torchdata/datapipes/iter/load/online.py", line 98, in __iter__
yield _get_response_from_google_drive(url, timeout=self.timeout)
File "/home/nayef211/.local/lib/python3.8/site-packages/torchdata/datapipes/iter/load/online.py", line 74, in _get_response_from_google_drive
raise RuntimeError("Internal error: headers don't contain content-disposition.")
RuntimeError: Internal error: headers don't contain content-disposition.
According to @parmeet:
This error existed in torchtext even before the migration, So I don't think any changes on torchdata would have triggered this. In my experience, I have seen this when the quota is exceeded. This is a transient error, though I never dig deeper into if there is a way to increase the quota limit or other alternatives to prevent this from happening.
The relevant discussion for this error can be found on this PR thread pytorch/text#1594 (comment).
cc @ejguan
Versions
PyTorch version: 1.11.0.dev20220111
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: CentOS Stream 8 (x86_64)
GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-3)
Clang version: Could not collect
CMake version: version 3.19.6
Libc version: glibc-2.28
Python version: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-5.6.13-0_fbk18_hardened_6007_g4c10224f1437-x86_64-with-glibc2.17
Is CUDA available: False
CUDA runtime version: No CUDA
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Versions of relevant libraries:
[pip3] numpy==1.21.4
[pip3] pytorch-sphinx-theme==0.0.24
[pip3] torch==1.11.0.dev20220111
[pip3] torchdata==0.3.0a0+ec32ee4
[pip3] torchtext==0.12.0a0+b04ae99
[conda] blas 1.0 mkl
[conda] cpuonly 2.0 0 pytorch
[conda] mkl 2021.4.0 h06a4308_640
[conda] numpy 1.21.4 pypi_0 pypi
[conda] pytorch 1.11.0.dev20220111 py3.8_cpu_0 pytorch-nightly
[conda] pytorch-mutex 1.0 cpu pytorch
[conda] pytorch-sphinx-theme 0.0.24 pypi_0 pypi
[conda] torchtext 0.12.0a0+e691934 pypi_0 pypi
ejguan
Metadata
Metadata
Assignees
Labels
No labels