Skip to content

[PowerPC] Exploit xxeval instruction for ternary patterns - part 1 #141733

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
299 changes: 267 additions & 32 deletions llvm/lib/Target/PowerPC/PPCInstrP10.td
Original file line number Diff line number Diff line change
Expand Up @@ -2159,8 +2159,243 @@ let AddedComplexity = 400, Predicates = [IsISA3_1, HasVSX] in {
(COPY_TO_REGCLASS $VRB, VSRC), 2)))>;
}

class XXEvalPattern <dag pattern, bits<8> imm> :
Pat<(v4i32 pattern), (XXEVAL $vA, $vB, $vC, imm)> {}
// Defines a pattern for the XXEVAL instruction with a specific value type,
// pattern, and immediate.
class XXEvalPattern <ValueType vt, dag pattern, bits<8> imm> :
Pat<(vt pattern), (XXEVAL $vA, $vB, $vC, imm)> {}

// Helper class to generate unary NOT patterns for vector types.
// For v4i32, emits (vnot B) or (vnot C).
// For other types, bitcasts operand to v4i32, applies vnot, then bitcasts back.
class XXEvalUnaryNotPattern<ValueType vt> {
dag vnotB = !if( !eq(vt, v4i32),
(vnot vt:$vB),
(vt (bitconvert (vnot (v4i32 (bitconvert vt:$vB)))))
);
dag vnotC = !if( !eq(vt, v4i32),
(vnot vt:$vC),
(vt (bitconvert (vnot (v4i32 (bitconvert vt:$vC)))))
);
}
Copy link
Contributor

@lei137 lei137 Jul 18, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Instead of doing this, can we just add patterns to support vnot for all the different vector types?


// Wrapper class for binary patterns with optional NOT on the result.
// If 'not' is 0, emits the binary op; if 1, emits vnot of the binary op.
class XXEvalBinaryPattern<ValueType vt, SDPatternOperator op, bit not = 0> {
dag opPat = !if(!eq(not, 0),
// DAG for the binary operation.
!if(!eq(vt, v4i32),
(op vt:$vB, vt:$vC),
(vt (bitconvert (op (v4i32 (bitconvert vt:$vB)), (v4i32 (bitconvert vt:$vC)))))),
// DAG for the binary operation with a NOT applied to the result.
!if(!eq(vt, v4i32),
(vnot (op vt:$vB, vt:$vC)),
(vt (bitconvert (vnot (op (v4i32 (bitconvert vt:$vB)), (v4i32 (bitconvert vt:$vC))))))));
}

multiclass XXEvalVSelectWithXAnd<ValueType vt, bits<8> baseImm> {
// Multiclass for ternary patterns of the form vselect(A, X, and(B, C)).
// vselect(A, xor(B,C), and(B,C)) => imm = baseImm = 22
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor>.opPat, XXEvalBinaryPattern<vt, and>.opPat),
baseImm>;
// vselect(A, nor(B,C), and(B,C)) => imm = baseImm + 2 = 24
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, XXEvalBinaryPattern<vt, and>.opPat),
!add(baseImm, 2)>;
// vselect(A, eqv(B,C), and(B,C)) => imm = baseImm + 3 = 25
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor, 1>.opPat, XXEvalBinaryPattern<vt, and>.opPat),
Copy link
Contributor

@lei137 lei137 Jul 18, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe I am reading this wrong, but it seems you are using operations and which is defined to use gpr registers and bitconvert it to vector types? Seems these eval instructions all use vector types, shouldn't we be using the associated vector ops like vand | vor for this?

!add(baseImm, 3)>;
// vselect(A, not(C), and(B,C)) => imm = baseImm + 4 = 26
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalUnaryNotPattern<vt>.vnotC, XXEvalBinaryPattern<vt, and>.opPat),
!add(baseImm, 4)>;
// vselect(A, not(B), and(B,C)) => imm = baseImm + 6 = 28
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalUnaryNotPattern<vt>.vnotB, XXEvalBinaryPattern<vt, and>.opPat),
!add(baseImm, 6)>;
}

multiclass XXEvalVSelectWithXB<ValueType vt, bits<8> baseImm>{
// Multiclass for ternary patterns of the form vselect(A, X, B).
// vselect(A, and(B,C), B) => imm = baseImm = 49
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and>.opPat, vt:$vB),
baseImm>;
// vselect(A, nor(B,C), B) => imm = baseImm + 7 = 56
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, vt:$vB),
!add(baseImm, 7)>;
// vselect(A, eqv(B,C), B) => imm = baseImm + 8 = 57
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor, 1>.opPat, vt:$vB),
!add(baseImm, 8)>;
// vselect(A, nand(B,C), B) => imm = baseImm + 13 = 62
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and, 1>.opPat, vt:$vB),
!add(baseImm, 13)>;
}

multiclass XXEvalVSelectWithXC<ValueType vt, bits<8> baseImm>{
// Multiclass for ternary patterns of the form vselect(A, X, C).
// vselect(A, and(B,C), C) => imm = baseImm = 81
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and>.opPat, vt:$vC),
baseImm>;
// vselect(A, nor(B,C), C) => imm = baseImm + 7 = 88
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, vt:$vC),
!add(baseImm, 7)>;
// vselect(A, eqv(B,C), C) => imm = baseImm + 8 = 89
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor, 1>.opPat, vt:$vC),
!add(baseImm, 8)>;
// vselect(A, nand(B,C), C) => imm = baseImm + 13 = 94
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and, 1>.opPat, vt:$vC),
!add(baseImm, 13)>;
}

multiclass XXEvalVSelectWithXXor<ValueType vt, bits<8> baseImm>{
// Multiclass for ternary patterns of the form vselect(A, X, xor(B,C)).
// vselect(A, and(B,C), xor(B,C)) => imm = baseImm = 97
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and>.opPat, XXEvalBinaryPattern<vt, xor>.opPat),
baseImm>;
// vselect(A, B, xor(B,C)) => imm = baseImm + 2 = 99
def : XXEvalPattern<vt,
(vselect vt:$vA, vt:$vB, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 2)>;
// vselect(A, C, xor(B,C)) => imm = baseImm + 4 = 101
def : XXEvalPattern<vt,
(vselect vt:$vA, vt:$vC, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 4)>;
// vselect(A, or(B,C), xor(B,C)) => imm = baseImm + 6 = 103
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or>.opPat, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 6)>;
// vselect(A, nor(B,C), xor(B,C)) => imm = baseImm + 7 = 104
def : XXEvalPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 7)>;
}

// Pattern class using COPY_TO_REGCLASS for type casting
class XXEvalBitcastPattern<ValueType vt, dag pattern, bits<8> imm> :
Pat<(vt pattern),
(COPY_TO_REGCLASS
(XXEVAL
(COPY_TO_REGCLASS vt:$vA, VSRC),
(COPY_TO_REGCLASS vt:$vB, VSRC),
(COPY_TO_REGCLASS vt:$vC, VSRC),
imm),
VRRC)>;

multiclass XXEvalVSelectWithXAndCast<ValueType vt, bits<8> baseImm> {
// Multiclass for ternary patterns using COPY_TO_REGCLASS for unsupported types
// vselect(A, xor(B,C), and(B,C)) => imm = baseImm = 22
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor>.opPat, XXEvalBinaryPattern<vt, and>.opPat),
baseImm>;
// vselect(A, nor(B,C), and(B,C)) => imm = baseImm + 2 = 24
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, XXEvalBinaryPattern<vt, and>.opPat),
!add(baseImm, 2)>;
// vselect(A, eqv(B,C), and(B,C)) => imm = baseImm + 3 = 25
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor, 1>.opPat, XXEvalBinaryPattern<vt, and>.opPat),
!add(baseImm, 3)>;
// vselect(A, not(C), and(B,C)) => imm = baseImm + 4 = 26
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalUnaryNotPattern<vt>.vnotC, XXEvalBinaryPattern<vt, and>.opPat),
!add(baseImm, 4)>;
// vselect(A, not(B), and(B,C)) => imm = baseImm + 6 = 28
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalUnaryNotPattern<vt>.vnotB, XXEvalBinaryPattern<vt, and>.opPat),
!add(baseImm, 6)>;
}

multiclass XXEvalVSelectWithXBCast<ValueType vt, bits<8> baseImm>{
// vselect(A, and(B,C), B) => imm = baseImm = 49
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and>.opPat, vt:$vB),
baseImm>;
// vselect(A, nor(B,C), B) => imm = baseImm + 7 = 56
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, vt:$vB),
!add(baseImm, 7)>;
// vselect(A, eqv(B,C), B) => imm = baseImm + 8 = 57
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor, 1>.opPat, vt:$vB),
!add(baseImm, 8)>;
// vselect(A, nand(B,C), B) => imm = baseImm + 13 = 62
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and, 1>.opPat, vt:$vB),
!add(baseImm, 13)>;
}

multiclass XXEvalVSelectWithXCCast<ValueType vt, bits<8> baseImm>{
// vselect(A, and(B,C), C) => imm = baseImm = 81
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and>.opPat, vt:$vC),
baseImm>;
// vselect(A, nor(B,C), C) => imm = baseImm + 7 = 88
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, vt:$vC),
!add(baseImm, 7)>;
// vselect(A, eqv(B,C), C) => imm = baseImm + 8 = 89
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, xor, 1>.opPat, vt:$vC),
!add(baseImm, 8)>;
// vselect(A, nand(B,C), C) => imm = baseImm + 13 = 94
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and, 1>.opPat, vt:$vC),
!add(baseImm, 13)>;
}

multiclass XXEvalVSelectWithXXorCast<ValueType vt, bits<8> baseImm>{
// vselect(A, and(B,C), xor(B,C)) => imm = baseImm = 97
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, and>.opPat, XXEvalBinaryPattern<vt, xor>.opPat),
baseImm>;
// vselect(A, B, xor(B,C)) => imm = baseImm + 2 = 99
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, vt:$vB, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 2)>;
// vselect(A, C, xor(B,C)) => imm = baseImm + 4 = 101
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, vt:$vC, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 4)>;
// vselect(A, or(B,C), xor(B,C)) => imm = baseImm + 6 = 103
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or>.opPat, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 6)>;
// vselect(A, nor(B,C), xor(B,C)) => imm = baseImm + 7 = 104
def : XXEvalBitcastPattern<vt,
(vselect vt:$vA, XXEvalBinaryPattern<vt, or, 1>.opPat, XXEvalBinaryPattern<vt, xor>.opPat),
!add(baseImm, 7)>;
}

// Instantiate XXEval patterns for all vector types
let Predicates = [HasP10Vector] in {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I noticed the previous eval patterns that were for v4i32 only were also predicated on prefixed instrs, I think it makes sense to include this here incase the code path with p10 but no prefix instrs occurred? I guess if it were impossible to turn off the predicated would be useless though?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Group Code Review:

  • Avoid nested let statements.
  • Move the code block to the previous let block.

let AddedComplexity = 400 in {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you can probably combine the AddedComplexity on the same line as the Predicates.

// For types directly supported by XXEVAL (v4i32, v2i64)
foreach type = [v4i32, v2i64] in {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

GRoup Code review:

  • nit Ty

defm : XXEvalVSelectWithXAnd<type, 22>;
defm : XXEvalVSelectWithXB<type, 49>;
defm : XXEvalVSelectWithXC<type, 81>;
defm : XXEvalVSelectWithXXor<type, 97>;
}

// For types that need COPY_TO_REGCLASS (v8i16, v16i8)
foreach type = [v8i16, v16i8] in {
defm : XXEvalVSelectWithXAndCast<type, 22>;
defm : XXEvalVSelectWithXBCast<type, 49>;
defm : XXEvalVSelectWithXCCast<type, 81>;
defm : XXEvalVSelectWithXXorCast<type, 97>;
}
}
}

let Predicates = [PrefixInstrs, HasP10Vector] in {
let AddedComplexity = 400 in {
Expand Down Expand Up @@ -2192,83 +2427,83 @@ let Predicates = [PrefixInstrs, HasP10Vector] in {
// Anonymous patterns for XXEVAL
// AND
// and(A, B, C)
def : XXEvalPattern<(and v4i32:$vA, (and v4i32:$vB, v4i32:$vC)), 1>;
def : XXEvalPattern<v4i32, (and v4i32:$vA, (and v4i32:$vB, v4i32:$vC)), 1>;
// and(A, xor(B, C))
def : XXEvalPattern<(and v4i32:$vA, (xor v4i32:$vB, v4i32:$vC)), 6>;
def : XXEvalPattern<v4i32, (and v4i32:$vA, (xor v4i32:$vB, v4i32:$vC)), 6>;
// and(A, or(B, C))
def : XXEvalPattern<(and v4i32:$vA, (or v4i32:$vB, v4i32:$vC)), 7>;
def : XXEvalPattern<v4i32, (and v4i32:$vA, (or v4i32:$vB, v4i32:$vC)), 7>;
// and(A, nor(B, C))
def : XXEvalPattern<(and v4i32:$vA, (vnot (or v4i32:$vB, v4i32:$vC))), 8>;
def : XXEvalPattern<v4i32, (and v4i32:$vA, (vnot (or v4i32:$vB, v4i32:$vC))), 8>;
// and(A, eqv(B, C))
def : XXEvalPattern<(and v4i32:$vA, (vnot (xor v4i32:$vB, v4i32:$vC))), 9>;
def : XXEvalPattern<v4i32, (and v4i32:$vA, (vnot (xor v4i32:$vB, v4i32:$vC))), 9>;
// and(A, nand(B, C))
def : XXEvalPattern<(and v4i32:$vA, (vnot (and v4i32:$vB, v4i32:$vC))), 14>;
def : XXEvalPattern<v4i32, (and v4i32:$vA, (vnot (and v4i32:$vB, v4i32:$vC))), 14>;

// NAND
// nand(A, B, C)
def : XXEvalPattern<(vnot (and v4i32:$vA, (and v4i32:$vB, v4i32:$vC))),
def : XXEvalPattern<v4i32, (vnot (and v4i32:$vA, (and v4i32:$vB, v4i32:$vC))),
!sub(255, 1)>;
// nand(A, xor(B, C))
def : XXEvalPattern<(vnot (and v4i32:$vA, (xor v4i32:$vB, v4i32:$vC))),
def : XXEvalPattern<v4i32, (vnot (and v4i32:$vA, (xor v4i32:$vB, v4i32:$vC))),
!sub(255, 6)>;
// nand(A, or(B, C))
def : XXEvalPattern<(vnot (and v4i32:$vA, (or v4i32:$vB, v4i32:$vC))),
def : XXEvalPattern<v4i32, (vnot (and v4i32:$vA, (or v4i32:$vB, v4i32:$vC))),
!sub(255, 7)>;
// nand(A, nor(B, C))
def : XXEvalPattern<(or (vnot v4i32:$vA), (or v4i32:$vB, v4i32:$vC)),
def : XXEvalPattern<v4i32, (or (vnot v4i32:$vA), (or v4i32:$vB, v4i32:$vC)),
!sub(255, 8)>;
// nand(A, eqv(B, C))
def : XXEvalPattern<(or (vnot v4i32:$vA), (xor v4i32:$vB, v4i32:$vC)),
def : XXEvalPattern<v4i32, (or (vnot v4i32:$vA), (xor v4i32:$vB, v4i32:$vC)),
!sub(255, 9)>;
// nand(A, nand(B, C))
def : XXEvalPattern<(or (vnot v4i32:$vA), (and v4i32:$vB, v4i32:$vC)),
def : XXEvalPattern<v4i32, (or (vnot v4i32:$vA), (and v4i32:$vB, v4i32:$vC)),
!sub(255, 14)>;

// EQV
// (eqv A, B, C)
def : XXEvalPattern<(or (and v4i32:$vA, (and v4i32:$vB, v4i32:$vC)),
def : XXEvalPattern<v4i32, (or (and v4i32:$vA, (and v4i32:$vB, v4i32:$vC)),
(vnot (or v4i32:$vA, (or v4i32:$vB, v4i32:$vC)))),
150>;
// (eqv A, (and B, C))
def : XXEvalPattern<(vnot (xor v4i32:$vA, (and v4i32:$vB, v4i32:$vC))), 225>;
def : XXEvalPattern<v4i32, (vnot (xor v4i32:$vA, (and v4i32:$vB, v4i32:$vC))), 225>;
// (eqv A, (or B, C))
def : XXEvalPattern<(vnot (xor v4i32:$vA, (or v4i32:$vB, v4i32:$vC))), 135>;
def : XXEvalPattern<v4i32, (vnot (xor v4i32:$vA, (or v4i32:$vB, v4i32:$vC))), 135>;

// NOR
// (nor A, B, C)
def : XXEvalPattern<(vnot (or v4i32:$vA, (or v4i32:$vB, v4i32:$vC))), 128>;
def : XXEvalPattern<v4i32, (vnot (or v4i32:$vA, (or v4i32:$vB, v4i32:$vC))), 128>;
// (nor A, (and B, C))
def : XXEvalPattern<(vnot (or v4i32:$vA, (and v4i32:$vB, v4i32:$vC))), 224>;
def : XXEvalPattern<v4i32, (vnot (or v4i32:$vA, (and v4i32:$vB, v4i32:$vC))), 224>;
// (nor A, (eqv B, C))
def : XXEvalPattern<(and (vnot v4i32:$vA), (xor v4i32:$vB, v4i32:$vC)), 96>;
def : XXEvalPattern<v4i32, (and (vnot v4i32:$vA), (xor v4i32:$vB, v4i32:$vC)), 96>;
// (nor A, (nand B, C))
def : XXEvalPattern<(and (vnot v4i32:$vA), (and v4i32:$vB, v4i32:$vC)), 16>;
def : XXEvalPattern<v4i32, (and (vnot v4i32:$vA), (and v4i32:$vB, v4i32:$vC)), 16>;
// (nor A, (nor B, C))
def : XXEvalPattern<(and (vnot v4i32:$vA), (or v4i32:$vB, v4i32:$vC)), 112>;
def : XXEvalPattern<v4i32, (and (vnot v4i32:$vA), (or v4i32:$vB, v4i32:$vC)), 112>;
// (nor A, (xor B, C))
def : XXEvalPattern<(vnot (or v4i32:$vA, (xor v4i32:$vB, v4i32:$vC))), 144>;
def : XXEvalPattern<v4i32, (vnot (or v4i32:$vA, (xor v4i32:$vB, v4i32:$vC))), 144>;

// OR
// (or A, B, C)
def : XXEvalPattern<(or v4i32:$vA, (or v4i32:$vB, v4i32:$vC)), 127>;
def : XXEvalPattern<v4i32, (or v4i32:$vA, (or v4i32:$vB, v4i32:$vC)), 127>;
// (or A, (and B, C))
def : XXEvalPattern<(or v4i32:$vA, (and v4i32:$vB, v4i32:$vC)), 31>;
def : XXEvalPattern<v4i32, (or v4i32:$vA, (and v4i32:$vB, v4i32:$vC)), 31>;
// (or A, (eqv B, C))
def : XXEvalPattern<(or v4i32:$vA, (vnot (xor v4i32:$vB, v4i32:$vC))), 159>;
def : XXEvalPattern<v4i32, (or v4i32:$vA, (vnot (xor v4i32:$vB, v4i32:$vC))), 159>;
// (or A, (nand B, C))
def : XXEvalPattern<(or v4i32:$vA, (vnot (and v4i32:$vB, v4i32:$vC))), 239>;
def : XXEvalPattern<v4i32, (or v4i32:$vA, (vnot (and v4i32:$vB, v4i32:$vC))), 239>;
// (or A, (nor B, C))
def : XXEvalPattern<(or v4i32:$vA, (vnot (or v4i32:$vB, v4i32:$vC))), 143>;
def : XXEvalPattern<v4i32, (or v4i32:$vA, (vnot (or v4i32:$vB, v4i32:$vC))), 143>;
// (or A, (xor B, C))
def : XXEvalPattern<(or v4i32:$vA, (xor v4i32:$vB, v4i32:$vC)), 111>;
def : XXEvalPattern<v4i32, (or v4i32:$vA, (xor v4i32:$vB, v4i32:$vC)), 111>;

// XOR
// (xor A, B, C)
def : XXEvalPattern<(xor v4i32:$vA, (xor v4i32:$vB, v4i32:$vC)), 105>;
def : XXEvalPattern<v4i32, (xor v4i32:$vA, (xor v4i32:$vB, v4i32:$vC)), 105>;
// (xor A, (and B, C))
def : XXEvalPattern<(xor v4i32:$vA, (and v4i32:$vB, v4i32:$vC)), 30>;
def : XXEvalPattern<v4i32, (xor v4i32:$vA, (and v4i32:$vB, v4i32:$vC)), 30>;
// (xor A, (or B, C))
def : XXEvalPattern<(xor v4i32:$vA, (or v4i32:$vB, v4i32:$vC)), 120>;
def : XXEvalPattern<v4i32, (xor v4i32:$vA, (or v4i32:$vB, v4i32:$vC)), 120>;

// Anonymous patterns to select prefixed VSX loads and stores.
// Load / Store f128
Expand Down
Loading
Loading