-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[MLIR][Linalg] Re-land linalg.matmul move to ODS + Remove/update failing obsolete OpDSL tests for linalg.matmul. #115319
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…ul' ops. (llvm#104783) The main goal of this patch is to extend the semantic of 'linalg.matmul' named op to include per operand transpose semantic while also laying out a way to move ops definition from OpDSL to tablegen. Hence, it is implemented in tablegen. Transpose semantic is as follows. By default 'linalg.matmul' behavior will remain as is. Transpose/broadcast semantics can be appiled explicitly by specifying the optional indexing_map attribute. By default, no transpose/broadcast is mandated. Example: ``` linalg.matmul indexing_maps = [ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)> ] ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>) outs(%arg2: memref<3x7xf32>) linalg.matmul indexing_maps = [ affine_map<(d0, d1, d2) -> (d2)>, // broadcast affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)> ] ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>) ```
…atmul. The earlier PR(llvm#104783) was reverted due to two failing OpDSL test for linalg.matmul. Since linalg.matmul is now defined using TableGen ODS instead of Python-based OpDSL, these test started failing and needs to be removed/updated. This commit removes/updates the failing obsolete tests from below tests. "mlir/test/python/integration/dialects/linalg/opsrun.py" "mlir/test/python/integration/dialects/transform.py"
|
@llvm/pr-subscribers-mlir-core @llvm/pr-subscribers-mlir-nvgpu Author: Md Asghar Ahmad Shahid (shahidact) ChangesThe earlier PR(#104783) which introduces Since linalg.matmul is now defined using TableGen ODS instead of Python-based OpDSL, This commit removes/updates the failing obsolete tests from below files. All other files Patch is 67.57 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/115319.diff 16 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
index b81a4c9c8760cf..c0eff99c850752 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
@@ -708,6 +708,16 @@ def LinalgStructuredInterface
return;
}]
>,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return true if the user has supplied an explicit indexing maps for this op.
+ }],
+ /*retTy=*/"bool",
+ /*methodName=*/"hasUserDefinedMaps",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{ return false; }]
+ >,
//===------------------------------------------------------------------===//
// Linalg generalization hooks.
//===------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index bf2f26de26e9ed..ee88ca516de6ff 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1065,78 +1065,6 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: rhs
--- !LinalgOpConfig
-metadata: !LinalgOpMetadata
- name: matmul
- cpp_class_name: MatmulOp
- doc: |-
- Performs a matrix multiplication of two 2D inputs.
-
- Numeric casting is performed on the operands to the inner multiply, promoting
- them to the same data type as the accumulator/output.
- implements:
- - LinalgContractionOpInterface
-structured_op: !LinalgStructuredOpConfig
- args:
- - !LinalgOperandDefConfig
- name: A
- kind: input_tensor
- type_var: T1
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
- - !LinalgOperandDefConfig
- name: B
- kind: input_tensor
- type_var: T2
- shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
- - !LinalgOperandDefConfig
- name: C
- kind: output_tensor
- type_var: U
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
- - !LinalgOperandDefConfig
- name: cast
- kind: type_fn_attr
- default_fn: cast_signed
- indexing_maps: !LinalgIndexingMapsConfig
- static_indexing_maps:
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
- iterator_types:
- - parallel
- - parallel
- - reduction
- assignments:
- - !ScalarAssign
- arg: C
- value: !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: add
- operands:
- - !ScalarExpression
- scalar_arg: C
- - !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: mul
- operands:
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: A
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: B
---- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_matmul
cpp_class_name: QuantizedMatmulOp
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index c2fee8ea55c960..2b47414ff5e924 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -554,6 +554,140 @@ def BroadcastOp : LinalgStructuredBase_Op<"broadcast", [
let hasCanonicalizer = 1;
}
+//===----------------------------------------------------------------------===//
+// Op definition for MatmulOp
+//===----------------------------------------------------------------------===//
+
+def MatmulOp : LinalgStructuredBase_Op<"matmul", [
+ AttrSizedOperandSegments,
+ LinalgContractionOpInterface]> {
+
+ let summary = [{
+ Performs a matrix multiplication of two 2D inputs without broadcast or transpose.
+ }];
+ let description = [{
+ Numeric casting is performed on the operands to the inner multiply,
+ promoting them to the same data type as the accumulator/output.
+
+ Broadcast and Transpose semantics can be appiled by specifying the explicit attribute
+ 'indexing_maps' as shown below.This is a list attribute, so the list must include all
+ the maps if specified.
+
+ Example Transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast and transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
+ }];
+
+ let arguments = (ins
+ Variadic<AnyType>:$inputs,
+ Variadic<AnyShaped>:$outputs,
+ DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps,
+ DefaultValuedOptionalAttr<TypeFnAttr, "TypeFn::cast_signed">:$cast
+ );
+ let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
+ let regions = (region AnyRegion:$region);
+
+ let skipDefaultBuilders = 1;
+ let builders = [
+ OpBuilder<
+ (ins "ValueRange":$inputs, "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, resultTensorTypes,
+ inputs, outputs, attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addOperands(operands);
+ $_state.addAttributes(attributes);
+ $_state.addTypes(resultTensorTypes);
+ (void)$_state.addRegion();
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ "Attribute":$cast, CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addAttribute("cast", cast);
+ buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>
+
+ ];
+ let hasCustomAssemblyFormat = 1;
+ let hasFolder = 1;
+ let hasVerifier = 1;
+
+ let extraClassDeclaration = structuredOpsBaseDecls # [{
+ SmallVector<utils::IteratorType> getIteratorTypesArray();
+
+ /// Implements the block region builder.
+ static void regionBuilder(ImplicitLocOpBuilder &b,
+ Block &block, ArrayRef<NamedAttribute> attrs);
+
+ /// Returns a list of AffineMap with the typical matmul indexing charactristic.
+ SmallVector<AffineMap> getDefaultIndexingMaps();
+
+ /// Returns true if the given broadcast map \p bcastMap is valid for this op.
+ bool isValidLhsRhsBroadcastMap(AffineMap bcastMap);
+
+ static std::function<void(ImplicitLocOpBuilder &,
+ Block &, ArrayRef<NamedAttribute>)>
+ getRegionBuilder() {
+ return regionBuilder;
+ }
+
+ ::mlir::MutableOperandRange getDpsInitsMutable() {
+ return getOutputsMutable();
+ }
+
+ // Generic methods.
+ static unsigned getNumRegionArgs();
+ std::string getLibraryCallName();
+ bool hasDynamicIndexingMaps();
+ /// Check if the op has broadcast and/or transpose semantic. Returns true if the
+ /// user defined indexing maps are not equal to default map.
+ bool hasUserDefinedMaps();
+ }];
+}
+
//===----------------------------------------------------------------------===//
// Named Linalg ops, implemented as a declarative configurations of generic ops.
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
index bd77965194b27f..0cffadf8fb64a0 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
@@ -15,14 +15,21 @@
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/TypeUtilities.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <numeric>
+#include <optional>
using namespace mlir;
using namespace mlir::linalg;
@@ -1211,7 +1218,6 @@ int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
-
// Mixed tensor/buffer operands are not allowed.
if (!linalgOp.hasPureTensorSemantics() &&
!linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
@@ -1231,6 +1237,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< ") to be equal to the number of input/output operands ("
<< linalgOp->getNumOperands() << ")";
+ // Set this flag if this op has user defined maps. This is required to guard
+ // the below error condition which assume default indexing maps.
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
@@ -1247,13 +1255,13 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< " dim(s) to match the number of loops";
int64_t rank = linalgOp.getRank(&opOperand);
+
if (indexingMap.getNumResults() != rank)
return op->emitOpError("expected operand rank (")
<< rank << ") to match the result rank of indexing_map #"
<< opOperand.getOperandNumber() << " ("
<< indexingMap.getNumResults() << ")";
}
-
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
@@ -1263,9 +1271,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
// Check if given shapes match to inferred shapes.
SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
-
- // Verify only static cases since we can't get exact dimension sizes and loop
- // ranges for dynamic cases in this stage.
+ // Verify only static cases since we can't get exact dimension sizes and
+ // loop ranges for dynamic cases in this stage.
if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
for (int64_t &range : endLoopRangeValues)
range -= 1;
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 730c478c2883ef..c909d13e4314b4 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -27,6 +27,7 @@
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/Matchers.h"
@@ -37,12 +38,17 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/LogicalResult.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
+#include <cassert>
#include <optional>
using namespace mlir;
@@ -149,15 +155,36 @@ static void fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion,
// iterator_types is an auto-generated method.
}
+/// Helper to create a typical indexing map for MatmulOp. Returns a list of
+/// AffineMap.
+static SmallVector<AffineMap, 3>
+getDefaultIndexingMapsForMatmul(MLIRContext *context) {
+ AffineExpr d0, d1, d2;
+ SmallVector<AffineMap, 3> indexingMaps;
+ bindDims(context, d0, d1, d2);
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context));
+ return indexingMaps;
+}
+
+/// Wrapper to return the typical indexing map array attribute for MatmulOp.
+static SmallVector<Attribute> getDefaultIndexingMapAttr(MLIRContext *context) {
+ return llvm::map_to_vector(
+ getDefaultIndexingMapsForMatmul(context),
+ [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); });
+}
+
/// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
/// The result types are derived automatically if `resultTensorTypes` is none.
/// The body of the operation is filled using `regionBuilder`. All ods-gen
/// created structured operations use the method to implement their builders.
-static void buildStructuredOp(OpBuilder &b, OperationState &state,
- std::optional<TypeRange> resultTensorTypes,
- ValueRange inputs, ValueRange outputs,
- ArrayRef<NamedAttribute> attributes,
- RegionBuilderFn regionBuilder) {
+static void buildStructuredOp(
+ OpBuilder &b, OperationState &state,
+ std::optional<TypeRange> resultTensorTypes, ValueRange inputs,
+ ValueRange outputs, ArrayRef<NamedAttribute> attributes,
+ RegionBuilderFn regionBuilder,
+ std::optional<ArrayRef<AffineMap>> indexingMaps = std::nullopt) {
// Derive the result types if needed.
SmallVector<Type> derivedResultTypes =
resultTensorTypes.value_or(TypeRange());
@@ -168,6 +195,20 @@ static void buildStructuredOp(OpBuilder &b, OperationState &state,
state.addOperands(inputs);
state.addOperands(outputs);
state.addTypes(derivedResultTypes);
+
+ // Initialize indexingMaps, for MatmulOp.
+ SmallVector<Attribute, 3> indexingMapsAttrVal;
+ if (indexingMaps.has_value()) {
+ for (mlir::AffineMap map : *indexingMaps) {
+ // Convert each AffineMap to an AffineMapAttr
+ indexingMapsAttrVal.push_back(AffineMapAttr::get(map));
+ }
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ } else {
+ indexingMapsAttrVal = getDefaultIndexingMapAttr(b.getContext());
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ }
+
state.addAttributes(attributes);
state.addAttribute(
"operandSegmentSizes",
@@ -299,11 +340,48 @@ static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result,
unsigned numRegionArgs,
RegionBuilderFn regionBuilder) {
+
+ SmallVector<Attribute, 3> indexingMapsAttr;
+ Attribute mapAttr;
+ if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) {
+ if (parser.parseEqual())
+ return failure();
+
+ if (parser.parseLSquare())
+ return failure();
+
+ do {
+ if (parser.parseAttribute(mapAttr))
+ return failure();
+ if (!isa<AffineMapAttr>(mapAttr)) {
+ return parser.emitError(parser.getCurrentLocation(),
+ "expected affine map attribute");
+ }
+ indexingMapsAttr.push_back(mapAttr);
+
+ if (parser.parseOptionalComma())
+ break;
+ } while (true);
+
+ if (parser.parseRSquare())
+ return failure();
+ }
+ // Initialize indexingMaps, if not supplied explicitly.
+ if (indexingMapsAttr.empty()) {
+ indexingMapsAttr = getDefaultIndexingMapAttr(result.getContext());
+ }
+ result.addAttribute("indexing_maps",
+ parser.getBuilder().getArrayAttr(indexingMapsAttr));
+
// TODO: Enable when ods-gen supports captures.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
+ // Parse optional attributes.
+ if (parser.parseOptionalAttrDict(result.attributes))
+ return failure();
+
// TODO: consider merging results parsing into region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
@@ -329,13 +407,9 @@ static void printNamedStructuredOpResults(OpAsmPrinter &p,
}
static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
- ValueRange inputs, ValueRange outputs) {
- p.printOptionalAttrDict(
- op->getAttrs(),
- /*elidedAttrs=*/{"operandSegmentSizes",
- // See generated code in
- // LinalgNamedStructuredOps.yamlgen.cpp.inc
- "linalg.memoized_indexing_maps"});
+ ValueRange inputs, ValueRange outputs,
+ ArrayRef<StringRef> elidedAttrs = {}) {
+ p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
// Printing is shared with generic ops, except for the region and
// attributes.
@@ -3382,3 +3456,168 @@ Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
Location loc) {
return arith::ConstantOp::materialize(builder, value, type, loc);
}
+
+/// Returns true if the result AffineExpr of the \p explicitMap is same as \p
+/// defaultMap.
+static bool isValidResultDimExprs(AffineMap explictMap, AffineMap defaultMap) {
+ auto explicitRange = explictMap.getResults();
+ auto defaultRange = defaultMap.getResults();
+ DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end());
+ DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end());
+ llvm::set_union(explicitSet, defaultSet);
+ return explicitSet == defaultSet;
+}
+
+/// Returns true if the \p explictMap is broadcasted with respect to the
+/// \p defaultMap.
+static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) {
+ return explictMap.getNumResults() < defaultMap.getNumResults();
+}
+
+/// Verifies the broadcast and transpose semantic sepecified by the explicit
+/// indexing map for the MatmulOp \p op for each operand specified by \p
+/// opIndex.
+static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp,
+ unsigned opIndex) {
+ SmallVector<AffineMap, 3> opInde...
[truncated]
|
|
@llvm/pr-subscribers-mlir Author: Md Asghar Ahmad Shahid (shahidact) ChangesThe earlier PR(#104783) which introduces Since linalg.matmul is now defined using TableGen ODS instead of Python-based OpDSL, This commit removes/updates the failing obsolete tests from below files. All other files Patch is 67.57 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/115319.diff 16 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
index b81a4c9c8760cf..c0eff99c850752 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
@@ -708,6 +708,16 @@ def LinalgStructuredInterface
return;
}]
>,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return true if the user has supplied an explicit indexing maps for this op.
+ }],
+ /*retTy=*/"bool",
+ /*methodName=*/"hasUserDefinedMaps",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{ return false; }]
+ >,
//===------------------------------------------------------------------===//
// Linalg generalization hooks.
//===------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index bf2f26de26e9ed..ee88ca516de6ff 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1065,78 +1065,6 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: rhs
--- !LinalgOpConfig
-metadata: !LinalgOpMetadata
- name: matmul
- cpp_class_name: MatmulOp
- doc: |-
- Performs a matrix multiplication of two 2D inputs.
-
- Numeric casting is performed on the operands to the inner multiply, promoting
- them to the same data type as the accumulator/output.
- implements:
- - LinalgContractionOpInterface
-structured_op: !LinalgStructuredOpConfig
- args:
- - !LinalgOperandDefConfig
- name: A
- kind: input_tensor
- type_var: T1
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
- - !LinalgOperandDefConfig
- name: B
- kind: input_tensor
- type_var: T2
- shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
- - !LinalgOperandDefConfig
- name: C
- kind: output_tensor
- type_var: U
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
- - !LinalgOperandDefConfig
- name: cast
- kind: type_fn_attr
- default_fn: cast_signed
- indexing_maps: !LinalgIndexingMapsConfig
- static_indexing_maps:
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
- iterator_types:
- - parallel
- - parallel
- - reduction
- assignments:
- - !ScalarAssign
- arg: C
- value: !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: add
- operands:
- - !ScalarExpression
- scalar_arg: C
- - !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: mul
- operands:
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: A
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: B
---- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_matmul
cpp_class_name: QuantizedMatmulOp
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index c2fee8ea55c960..2b47414ff5e924 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -554,6 +554,140 @@ def BroadcastOp : LinalgStructuredBase_Op<"broadcast", [
let hasCanonicalizer = 1;
}
+//===----------------------------------------------------------------------===//
+// Op definition for MatmulOp
+//===----------------------------------------------------------------------===//
+
+def MatmulOp : LinalgStructuredBase_Op<"matmul", [
+ AttrSizedOperandSegments,
+ LinalgContractionOpInterface]> {
+
+ let summary = [{
+ Performs a matrix multiplication of two 2D inputs without broadcast or transpose.
+ }];
+ let description = [{
+ Numeric casting is performed on the operands to the inner multiply,
+ promoting them to the same data type as the accumulator/output.
+
+ Broadcast and Transpose semantics can be appiled by specifying the explicit attribute
+ 'indexing_maps' as shown below.This is a list attribute, so the list must include all
+ the maps if specified.
+
+ Example Transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast and transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
+ }];
+
+ let arguments = (ins
+ Variadic<AnyType>:$inputs,
+ Variadic<AnyShaped>:$outputs,
+ DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps,
+ DefaultValuedOptionalAttr<TypeFnAttr, "TypeFn::cast_signed">:$cast
+ );
+ let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
+ let regions = (region AnyRegion:$region);
+
+ let skipDefaultBuilders = 1;
+ let builders = [
+ OpBuilder<
+ (ins "ValueRange":$inputs, "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, resultTensorTypes,
+ inputs, outputs, attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addOperands(operands);
+ $_state.addAttributes(attributes);
+ $_state.addTypes(resultTensorTypes);
+ (void)$_state.addRegion();
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ "Attribute":$cast, CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addAttribute("cast", cast);
+ buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>
+
+ ];
+ let hasCustomAssemblyFormat = 1;
+ let hasFolder = 1;
+ let hasVerifier = 1;
+
+ let extraClassDeclaration = structuredOpsBaseDecls # [{
+ SmallVector<utils::IteratorType> getIteratorTypesArray();
+
+ /// Implements the block region builder.
+ static void regionBuilder(ImplicitLocOpBuilder &b,
+ Block &block, ArrayRef<NamedAttribute> attrs);
+
+ /// Returns a list of AffineMap with the typical matmul indexing charactristic.
+ SmallVector<AffineMap> getDefaultIndexingMaps();
+
+ /// Returns true if the given broadcast map \p bcastMap is valid for this op.
+ bool isValidLhsRhsBroadcastMap(AffineMap bcastMap);
+
+ static std::function<void(ImplicitLocOpBuilder &,
+ Block &, ArrayRef<NamedAttribute>)>
+ getRegionBuilder() {
+ return regionBuilder;
+ }
+
+ ::mlir::MutableOperandRange getDpsInitsMutable() {
+ return getOutputsMutable();
+ }
+
+ // Generic methods.
+ static unsigned getNumRegionArgs();
+ std::string getLibraryCallName();
+ bool hasDynamicIndexingMaps();
+ /// Check if the op has broadcast and/or transpose semantic. Returns true if the
+ /// user defined indexing maps are not equal to default map.
+ bool hasUserDefinedMaps();
+ }];
+}
+
//===----------------------------------------------------------------------===//
// Named Linalg ops, implemented as a declarative configurations of generic ops.
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
index bd77965194b27f..0cffadf8fb64a0 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
@@ -15,14 +15,21 @@
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/TypeUtilities.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <numeric>
+#include <optional>
using namespace mlir;
using namespace mlir::linalg;
@@ -1211,7 +1218,6 @@ int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
-
// Mixed tensor/buffer operands are not allowed.
if (!linalgOp.hasPureTensorSemantics() &&
!linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
@@ -1231,6 +1237,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< ") to be equal to the number of input/output operands ("
<< linalgOp->getNumOperands() << ")";
+ // Set this flag if this op has user defined maps. This is required to guard
+ // the below error condition which assume default indexing maps.
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
@@ -1247,13 +1255,13 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< " dim(s) to match the number of loops";
int64_t rank = linalgOp.getRank(&opOperand);
+
if (indexingMap.getNumResults() != rank)
return op->emitOpError("expected operand rank (")
<< rank << ") to match the result rank of indexing_map #"
<< opOperand.getOperandNumber() << " ("
<< indexingMap.getNumResults() << ")";
}
-
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
@@ -1263,9 +1271,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
// Check if given shapes match to inferred shapes.
SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
-
- // Verify only static cases since we can't get exact dimension sizes and loop
- // ranges for dynamic cases in this stage.
+ // Verify only static cases since we can't get exact dimension sizes and
+ // loop ranges for dynamic cases in this stage.
if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
for (int64_t &range : endLoopRangeValues)
range -= 1;
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 730c478c2883ef..c909d13e4314b4 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -27,6 +27,7 @@
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/Matchers.h"
@@ -37,12 +38,17 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/LogicalResult.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
+#include <cassert>
#include <optional>
using namespace mlir;
@@ -149,15 +155,36 @@ static void fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion,
// iterator_types is an auto-generated method.
}
+/// Helper to create a typical indexing map for MatmulOp. Returns a list of
+/// AffineMap.
+static SmallVector<AffineMap, 3>
+getDefaultIndexingMapsForMatmul(MLIRContext *context) {
+ AffineExpr d0, d1, d2;
+ SmallVector<AffineMap, 3> indexingMaps;
+ bindDims(context, d0, d1, d2);
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context));
+ return indexingMaps;
+}
+
+/// Wrapper to return the typical indexing map array attribute for MatmulOp.
+static SmallVector<Attribute> getDefaultIndexingMapAttr(MLIRContext *context) {
+ return llvm::map_to_vector(
+ getDefaultIndexingMapsForMatmul(context),
+ [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); });
+}
+
/// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
/// The result types are derived automatically if `resultTensorTypes` is none.
/// The body of the operation is filled using `regionBuilder`. All ods-gen
/// created structured operations use the method to implement their builders.
-static void buildStructuredOp(OpBuilder &b, OperationState &state,
- std::optional<TypeRange> resultTensorTypes,
- ValueRange inputs, ValueRange outputs,
- ArrayRef<NamedAttribute> attributes,
- RegionBuilderFn regionBuilder) {
+static void buildStructuredOp(
+ OpBuilder &b, OperationState &state,
+ std::optional<TypeRange> resultTensorTypes, ValueRange inputs,
+ ValueRange outputs, ArrayRef<NamedAttribute> attributes,
+ RegionBuilderFn regionBuilder,
+ std::optional<ArrayRef<AffineMap>> indexingMaps = std::nullopt) {
// Derive the result types if needed.
SmallVector<Type> derivedResultTypes =
resultTensorTypes.value_or(TypeRange());
@@ -168,6 +195,20 @@ static void buildStructuredOp(OpBuilder &b, OperationState &state,
state.addOperands(inputs);
state.addOperands(outputs);
state.addTypes(derivedResultTypes);
+
+ // Initialize indexingMaps, for MatmulOp.
+ SmallVector<Attribute, 3> indexingMapsAttrVal;
+ if (indexingMaps.has_value()) {
+ for (mlir::AffineMap map : *indexingMaps) {
+ // Convert each AffineMap to an AffineMapAttr
+ indexingMapsAttrVal.push_back(AffineMapAttr::get(map));
+ }
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ } else {
+ indexingMapsAttrVal = getDefaultIndexingMapAttr(b.getContext());
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ }
+
state.addAttributes(attributes);
state.addAttribute(
"operandSegmentSizes",
@@ -299,11 +340,48 @@ static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result,
unsigned numRegionArgs,
RegionBuilderFn regionBuilder) {
+
+ SmallVector<Attribute, 3> indexingMapsAttr;
+ Attribute mapAttr;
+ if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) {
+ if (parser.parseEqual())
+ return failure();
+
+ if (parser.parseLSquare())
+ return failure();
+
+ do {
+ if (parser.parseAttribute(mapAttr))
+ return failure();
+ if (!isa<AffineMapAttr>(mapAttr)) {
+ return parser.emitError(parser.getCurrentLocation(),
+ "expected affine map attribute");
+ }
+ indexingMapsAttr.push_back(mapAttr);
+
+ if (parser.parseOptionalComma())
+ break;
+ } while (true);
+
+ if (parser.parseRSquare())
+ return failure();
+ }
+ // Initialize indexingMaps, if not supplied explicitly.
+ if (indexingMapsAttr.empty()) {
+ indexingMapsAttr = getDefaultIndexingMapAttr(result.getContext());
+ }
+ result.addAttribute("indexing_maps",
+ parser.getBuilder().getArrayAttr(indexingMapsAttr));
+
// TODO: Enable when ods-gen supports captures.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
+ // Parse optional attributes.
+ if (parser.parseOptionalAttrDict(result.attributes))
+ return failure();
+
// TODO: consider merging results parsing into region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
@@ -329,13 +407,9 @@ static void printNamedStructuredOpResults(OpAsmPrinter &p,
}
static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
- ValueRange inputs, ValueRange outputs) {
- p.printOptionalAttrDict(
- op->getAttrs(),
- /*elidedAttrs=*/{"operandSegmentSizes",
- // See generated code in
- // LinalgNamedStructuredOps.yamlgen.cpp.inc
- "linalg.memoized_indexing_maps"});
+ ValueRange inputs, ValueRange outputs,
+ ArrayRef<StringRef> elidedAttrs = {}) {
+ p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
// Printing is shared with generic ops, except for the region and
// attributes.
@@ -3382,3 +3456,168 @@ Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
Location loc) {
return arith::ConstantOp::materialize(builder, value, type, loc);
}
+
+/// Returns true if the result AffineExpr of the \p explicitMap is same as \p
+/// defaultMap.
+static bool isValidResultDimExprs(AffineMap explictMap, AffineMap defaultMap) {
+ auto explicitRange = explictMap.getResults();
+ auto defaultRange = defaultMap.getResults();
+ DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end());
+ DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end());
+ llvm::set_union(explicitSet, defaultSet);
+ return explicitSet == defaultSet;
+}
+
+/// Returns true if the \p explictMap is broadcasted with respect to the
+/// \p defaultMap.
+static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) {
+ return explictMap.getNumResults() < defaultMap.getNumResults();
+}
+
+/// Verifies the broadcast and transpose semantic sepecified by the explicit
+/// indexing map for the MatmulOp \p op for each operand specified by \p
+/// opIndex.
+static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp,
+ unsigned opIndex) {
+ SmallVector<AffineMap, 3> opInde...
[truncated]
|
|
@llvm/pr-subscribers-mlir-gpu Author: Md Asghar Ahmad Shahid (shahidact) ChangesThe earlier PR(#104783) which introduces Since linalg.matmul is now defined using TableGen ODS instead of Python-based OpDSL, This commit removes/updates the failing obsolete tests from below files. All other files Patch is 67.57 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/115319.diff 16 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
index b81a4c9c8760cf..c0eff99c850752 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
@@ -708,6 +708,16 @@ def LinalgStructuredInterface
return;
}]
>,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return true if the user has supplied an explicit indexing maps for this op.
+ }],
+ /*retTy=*/"bool",
+ /*methodName=*/"hasUserDefinedMaps",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{ return false; }]
+ >,
//===------------------------------------------------------------------===//
// Linalg generalization hooks.
//===------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index bf2f26de26e9ed..ee88ca516de6ff 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1065,78 +1065,6 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: rhs
--- !LinalgOpConfig
-metadata: !LinalgOpMetadata
- name: matmul
- cpp_class_name: MatmulOp
- doc: |-
- Performs a matrix multiplication of two 2D inputs.
-
- Numeric casting is performed on the operands to the inner multiply, promoting
- them to the same data type as the accumulator/output.
- implements:
- - LinalgContractionOpInterface
-structured_op: !LinalgStructuredOpConfig
- args:
- - !LinalgOperandDefConfig
- name: A
- kind: input_tensor
- type_var: T1
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
- - !LinalgOperandDefConfig
- name: B
- kind: input_tensor
- type_var: T2
- shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
- - !LinalgOperandDefConfig
- name: C
- kind: output_tensor
- type_var: U
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
- - !LinalgOperandDefConfig
- name: cast
- kind: type_fn_attr
- default_fn: cast_signed
- indexing_maps: !LinalgIndexingMapsConfig
- static_indexing_maps:
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
- iterator_types:
- - parallel
- - parallel
- - reduction
- assignments:
- - !ScalarAssign
- arg: C
- value: !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: add
- operands:
- - !ScalarExpression
- scalar_arg: C
- - !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: mul
- operands:
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: A
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: B
---- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_matmul
cpp_class_name: QuantizedMatmulOp
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index c2fee8ea55c960..2b47414ff5e924 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -554,6 +554,140 @@ def BroadcastOp : LinalgStructuredBase_Op<"broadcast", [
let hasCanonicalizer = 1;
}
+//===----------------------------------------------------------------------===//
+// Op definition for MatmulOp
+//===----------------------------------------------------------------------===//
+
+def MatmulOp : LinalgStructuredBase_Op<"matmul", [
+ AttrSizedOperandSegments,
+ LinalgContractionOpInterface]> {
+
+ let summary = [{
+ Performs a matrix multiplication of two 2D inputs without broadcast or transpose.
+ }];
+ let description = [{
+ Numeric casting is performed on the operands to the inner multiply,
+ promoting them to the same data type as the accumulator/output.
+
+ Broadcast and Transpose semantics can be appiled by specifying the explicit attribute
+ 'indexing_maps' as shown below.This is a list attribute, so the list must include all
+ the maps if specified.
+
+ Example Transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast and transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
+ }];
+
+ let arguments = (ins
+ Variadic<AnyType>:$inputs,
+ Variadic<AnyShaped>:$outputs,
+ DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps,
+ DefaultValuedOptionalAttr<TypeFnAttr, "TypeFn::cast_signed">:$cast
+ );
+ let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
+ let regions = (region AnyRegion:$region);
+
+ let skipDefaultBuilders = 1;
+ let builders = [
+ OpBuilder<
+ (ins "ValueRange":$inputs, "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, resultTensorTypes,
+ inputs, outputs, attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addOperands(operands);
+ $_state.addAttributes(attributes);
+ $_state.addTypes(resultTensorTypes);
+ (void)$_state.addRegion();
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ "Attribute":$cast, CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addAttribute("cast", cast);
+ buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>
+
+ ];
+ let hasCustomAssemblyFormat = 1;
+ let hasFolder = 1;
+ let hasVerifier = 1;
+
+ let extraClassDeclaration = structuredOpsBaseDecls # [{
+ SmallVector<utils::IteratorType> getIteratorTypesArray();
+
+ /// Implements the block region builder.
+ static void regionBuilder(ImplicitLocOpBuilder &b,
+ Block &block, ArrayRef<NamedAttribute> attrs);
+
+ /// Returns a list of AffineMap with the typical matmul indexing charactristic.
+ SmallVector<AffineMap> getDefaultIndexingMaps();
+
+ /// Returns true if the given broadcast map \p bcastMap is valid for this op.
+ bool isValidLhsRhsBroadcastMap(AffineMap bcastMap);
+
+ static std::function<void(ImplicitLocOpBuilder &,
+ Block &, ArrayRef<NamedAttribute>)>
+ getRegionBuilder() {
+ return regionBuilder;
+ }
+
+ ::mlir::MutableOperandRange getDpsInitsMutable() {
+ return getOutputsMutable();
+ }
+
+ // Generic methods.
+ static unsigned getNumRegionArgs();
+ std::string getLibraryCallName();
+ bool hasDynamicIndexingMaps();
+ /// Check if the op has broadcast and/or transpose semantic. Returns true if the
+ /// user defined indexing maps are not equal to default map.
+ bool hasUserDefinedMaps();
+ }];
+}
+
//===----------------------------------------------------------------------===//
// Named Linalg ops, implemented as a declarative configurations of generic ops.
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
index bd77965194b27f..0cffadf8fb64a0 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
@@ -15,14 +15,21 @@
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/TypeUtilities.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <numeric>
+#include <optional>
using namespace mlir;
using namespace mlir::linalg;
@@ -1211,7 +1218,6 @@ int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
-
// Mixed tensor/buffer operands are not allowed.
if (!linalgOp.hasPureTensorSemantics() &&
!linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
@@ -1231,6 +1237,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< ") to be equal to the number of input/output operands ("
<< linalgOp->getNumOperands() << ")";
+ // Set this flag if this op has user defined maps. This is required to guard
+ // the below error condition which assume default indexing maps.
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
@@ -1247,13 +1255,13 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< " dim(s) to match the number of loops";
int64_t rank = linalgOp.getRank(&opOperand);
+
if (indexingMap.getNumResults() != rank)
return op->emitOpError("expected operand rank (")
<< rank << ") to match the result rank of indexing_map #"
<< opOperand.getOperandNumber() << " ("
<< indexingMap.getNumResults() << ")";
}
-
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
@@ -1263,9 +1271,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
// Check if given shapes match to inferred shapes.
SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
-
- // Verify only static cases since we can't get exact dimension sizes and loop
- // ranges for dynamic cases in this stage.
+ // Verify only static cases since we can't get exact dimension sizes and
+ // loop ranges for dynamic cases in this stage.
if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
for (int64_t &range : endLoopRangeValues)
range -= 1;
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 730c478c2883ef..c909d13e4314b4 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -27,6 +27,7 @@
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/Matchers.h"
@@ -37,12 +38,17 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/LogicalResult.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
+#include <cassert>
#include <optional>
using namespace mlir;
@@ -149,15 +155,36 @@ static void fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion,
// iterator_types is an auto-generated method.
}
+/// Helper to create a typical indexing map for MatmulOp. Returns a list of
+/// AffineMap.
+static SmallVector<AffineMap, 3>
+getDefaultIndexingMapsForMatmul(MLIRContext *context) {
+ AffineExpr d0, d1, d2;
+ SmallVector<AffineMap, 3> indexingMaps;
+ bindDims(context, d0, d1, d2);
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context));
+ return indexingMaps;
+}
+
+/// Wrapper to return the typical indexing map array attribute for MatmulOp.
+static SmallVector<Attribute> getDefaultIndexingMapAttr(MLIRContext *context) {
+ return llvm::map_to_vector(
+ getDefaultIndexingMapsForMatmul(context),
+ [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); });
+}
+
/// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
/// The result types are derived automatically if `resultTensorTypes` is none.
/// The body of the operation is filled using `regionBuilder`. All ods-gen
/// created structured operations use the method to implement their builders.
-static void buildStructuredOp(OpBuilder &b, OperationState &state,
- std::optional<TypeRange> resultTensorTypes,
- ValueRange inputs, ValueRange outputs,
- ArrayRef<NamedAttribute> attributes,
- RegionBuilderFn regionBuilder) {
+static void buildStructuredOp(
+ OpBuilder &b, OperationState &state,
+ std::optional<TypeRange> resultTensorTypes, ValueRange inputs,
+ ValueRange outputs, ArrayRef<NamedAttribute> attributes,
+ RegionBuilderFn regionBuilder,
+ std::optional<ArrayRef<AffineMap>> indexingMaps = std::nullopt) {
// Derive the result types if needed.
SmallVector<Type> derivedResultTypes =
resultTensorTypes.value_or(TypeRange());
@@ -168,6 +195,20 @@ static void buildStructuredOp(OpBuilder &b, OperationState &state,
state.addOperands(inputs);
state.addOperands(outputs);
state.addTypes(derivedResultTypes);
+
+ // Initialize indexingMaps, for MatmulOp.
+ SmallVector<Attribute, 3> indexingMapsAttrVal;
+ if (indexingMaps.has_value()) {
+ for (mlir::AffineMap map : *indexingMaps) {
+ // Convert each AffineMap to an AffineMapAttr
+ indexingMapsAttrVal.push_back(AffineMapAttr::get(map));
+ }
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ } else {
+ indexingMapsAttrVal = getDefaultIndexingMapAttr(b.getContext());
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ }
+
state.addAttributes(attributes);
state.addAttribute(
"operandSegmentSizes",
@@ -299,11 +340,48 @@ static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result,
unsigned numRegionArgs,
RegionBuilderFn regionBuilder) {
+
+ SmallVector<Attribute, 3> indexingMapsAttr;
+ Attribute mapAttr;
+ if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) {
+ if (parser.parseEqual())
+ return failure();
+
+ if (parser.parseLSquare())
+ return failure();
+
+ do {
+ if (parser.parseAttribute(mapAttr))
+ return failure();
+ if (!isa<AffineMapAttr>(mapAttr)) {
+ return parser.emitError(parser.getCurrentLocation(),
+ "expected affine map attribute");
+ }
+ indexingMapsAttr.push_back(mapAttr);
+
+ if (parser.parseOptionalComma())
+ break;
+ } while (true);
+
+ if (parser.parseRSquare())
+ return failure();
+ }
+ // Initialize indexingMaps, if not supplied explicitly.
+ if (indexingMapsAttr.empty()) {
+ indexingMapsAttr = getDefaultIndexingMapAttr(result.getContext());
+ }
+ result.addAttribute("indexing_maps",
+ parser.getBuilder().getArrayAttr(indexingMapsAttr));
+
// TODO: Enable when ods-gen supports captures.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
+ // Parse optional attributes.
+ if (parser.parseOptionalAttrDict(result.attributes))
+ return failure();
+
// TODO: consider merging results parsing into region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
@@ -329,13 +407,9 @@ static void printNamedStructuredOpResults(OpAsmPrinter &p,
}
static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
- ValueRange inputs, ValueRange outputs) {
- p.printOptionalAttrDict(
- op->getAttrs(),
- /*elidedAttrs=*/{"operandSegmentSizes",
- // See generated code in
- // LinalgNamedStructuredOps.yamlgen.cpp.inc
- "linalg.memoized_indexing_maps"});
+ ValueRange inputs, ValueRange outputs,
+ ArrayRef<StringRef> elidedAttrs = {}) {
+ p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
// Printing is shared with generic ops, except for the region and
// attributes.
@@ -3382,3 +3456,168 @@ Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
Location loc) {
return arith::ConstantOp::materialize(builder, value, type, loc);
}
+
+/// Returns true if the result AffineExpr of the \p explicitMap is same as \p
+/// defaultMap.
+static bool isValidResultDimExprs(AffineMap explictMap, AffineMap defaultMap) {
+ auto explicitRange = explictMap.getResults();
+ auto defaultRange = defaultMap.getResults();
+ DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end());
+ DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end());
+ llvm::set_union(explicitSet, defaultSet);
+ return explicitSet == defaultSet;
+}
+
+/// Returns true if the \p explictMap is broadcasted with respect to the
+/// \p defaultMap.
+static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) {
+ return explictMap.getNumResults() < defaultMap.getNumResults();
+}
+
+/// Verifies the broadcast and transpose semantic sepecified by the explicit
+/// indexing map for the MatmulOp \p op for each operand specified by \p
+/// opIndex.
+static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp,
+ unsigned opIndex) {
+ SmallVector<AffineMap, 3> opInde...
[truncated]
|
|
@llvm/pr-subscribers-mlir-linalg Author: Md Asghar Ahmad Shahid (shahidact) ChangesThe earlier PR(#104783) which introduces Since linalg.matmul is now defined using TableGen ODS instead of Python-based OpDSL, This commit removes/updates the failing obsolete tests from below files. All other files Patch is 67.57 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/115319.diff 16 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
index b81a4c9c8760cf..c0eff99c850752 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
@@ -708,6 +708,16 @@ def LinalgStructuredInterface
return;
}]
>,
+ InterfaceMethod<
+ /*desc=*/[{
+ Return true if the user has supplied an explicit indexing maps for this op.
+ }],
+ /*retTy=*/"bool",
+ /*methodName=*/"hasUserDefinedMaps",
+ /*args=*/(ins),
+ /*methodBody=*/"",
+ /*defaultImplementation=*/[{ return false; }]
+ >,
//===------------------------------------------------------------------===//
// Linalg generalization hooks.
//===------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index bf2f26de26e9ed..ee88ca516de6ff 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1065,78 +1065,6 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: rhs
--- !LinalgOpConfig
-metadata: !LinalgOpMetadata
- name: matmul
- cpp_class_name: MatmulOp
- doc: |-
- Performs a matrix multiplication of two 2D inputs.
-
- Numeric casting is performed on the operands to the inner multiply, promoting
- them to the same data type as the accumulator/output.
- implements:
- - LinalgContractionOpInterface
-structured_op: !LinalgStructuredOpConfig
- args:
- - !LinalgOperandDefConfig
- name: A
- kind: input_tensor
- type_var: T1
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
- - !LinalgOperandDefConfig
- name: B
- kind: input_tensor
- type_var: T2
- shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
- - !LinalgOperandDefConfig
- name: C
- kind: output_tensor
- type_var: U
- shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
- - !LinalgOperandDefConfig
- name: cast
- kind: type_fn_attr
- default_fn: cast_signed
- indexing_maps: !LinalgIndexingMapsConfig
- static_indexing_maps:
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
- - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
- iterator_types:
- - parallel
- - parallel
- - reduction
- assignments:
- - !ScalarAssign
- arg: C
- value: !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: add
- operands:
- - !ScalarExpression
- scalar_arg: C
- - !ScalarExpression
- scalar_fn:
- kind: binary
- fn_name: mul
- operands:
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: A
- - !ScalarExpression
- scalar_fn:
- kind: type
- attr_name: cast
- type_var: U
- operands:
- - !ScalarExpression
- scalar_arg: B
---- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_matmul
cpp_class_name: QuantizedMatmulOp
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index c2fee8ea55c960..2b47414ff5e924 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -554,6 +554,140 @@ def BroadcastOp : LinalgStructuredBase_Op<"broadcast", [
let hasCanonicalizer = 1;
}
+//===----------------------------------------------------------------------===//
+// Op definition for MatmulOp
+//===----------------------------------------------------------------------===//
+
+def MatmulOp : LinalgStructuredBase_Op<"matmul", [
+ AttrSizedOperandSegments,
+ LinalgContractionOpInterface]> {
+
+ let summary = [{
+ Performs a matrix multiplication of two 2D inputs without broadcast or transpose.
+ }];
+ let description = [{
+ Numeric casting is performed on the operands to the inner multiply,
+ promoting them to the same data type as the accumulator/output.
+
+ Broadcast and Transpose semantics can be appiled by specifying the explicit attribute
+ 'indexing_maps' as shown below.This is a list attribute, so the list must include all
+ the maps if specified.
+
+ Example Transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d2, d1)>,
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>)
+ outs(%arg2: memref<3x7xf32>)
+ ```
+
+ Example Broadcast and transpose:
+ ```
+ linalg.matmul indexing_maps = [
+ affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+ affine_map<(d0, d1, d2) -> (d2)>, // broadcast
+ affine_map<(d0, d1, d2) -> (d0, d1)>
+ ]
+ ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
+ }];
+
+ let arguments = (ins
+ Variadic<AnyType>:$inputs,
+ Variadic<AnyShaped>:$outputs,
+ DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps,
+ DefaultValuedOptionalAttr<TypeFnAttr, "TypeFn::cast_signed">:$cast
+ );
+ let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
+ let regions = (region AnyRegion:$region);
+
+ let skipDefaultBuilders = 1;
+ let builders = [
+ OpBuilder<
+ (ins "ValueRange":$inputs, "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ buildStructuredOp($_builder, $_state, resultTensorTypes,
+ inputs, outputs, attributes, MatmulOp::getRegionBuilder());
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
+ CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addOperands(operands);
+ $_state.addAttributes(attributes);
+ $_state.addTypes(resultTensorTypes);
+ (void)$_state.addRegion();
+ }]>,
+ OpBuilder<
+ (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+ "ValueRange":$outputs,
+ "Attribute":$cast, CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+ [{
+ $_state.addAttribute("cast", cast);
+ buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
+ attributes, MatmulOp::getRegionBuilder());
+ }]>
+
+ ];
+ let hasCustomAssemblyFormat = 1;
+ let hasFolder = 1;
+ let hasVerifier = 1;
+
+ let extraClassDeclaration = structuredOpsBaseDecls # [{
+ SmallVector<utils::IteratorType> getIteratorTypesArray();
+
+ /// Implements the block region builder.
+ static void regionBuilder(ImplicitLocOpBuilder &b,
+ Block &block, ArrayRef<NamedAttribute> attrs);
+
+ /// Returns a list of AffineMap with the typical matmul indexing charactristic.
+ SmallVector<AffineMap> getDefaultIndexingMaps();
+
+ /// Returns true if the given broadcast map \p bcastMap is valid for this op.
+ bool isValidLhsRhsBroadcastMap(AffineMap bcastMap);
+
+ static std::function<void(ImplicitLocOpBuilder &,
+ Block &, ArrayRef<NamedAttribute>)>
+ getRegionBuilder() {
+ return regionBuilder;
+ }
+
+ ::mlir::MutableOperandRange getDpsInitsMutable() {
+ return getOutputsMutable();
+ }
+
+ // Generic methods.
+ static unsigned getNumRegionArgs();
+ std::string getLibraryCallName();
+ bool hasDynamicIndexingMaps();
+ /// Check if the op has broadcast and/or transpose semantic. Returns true if the
+ /// user defined indexing maps are not equal to default map.
+ bool hasUserDefinedMaps();
+ }];
+}
+
//===----------------------------------------------------------------------===//
// Named Linalg ops, implemented as a declarative configurations of generic ops.
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
index bd77965194b27f..0cffadf8fb64a0 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
@@ -15,14 +15,21 @@
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/TypeUtilities.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <numeric>
+#include <optional>
using namespace mlir;
using namespace mlir::linalg;
@@ -1211,7 +1218,6 @@ int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
-
// Mixed tensor/buffer operands are not allowed.
if (!linalgOp.hasPureTensorSemantics() &&
!linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
@@ -1231,6 +1237,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< ") to be equal to the number of input/output operands ("
<< linalgOp->getNumOperands() << ")";
+ // Set this flag if this op has user defined maps. This is required to guard
+ // the below error condition which assume default indexing maps.
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
@@ -1247,13 +1255,13 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< " dim(s) to match the number of loops";
int64_t rank = linalgOp.getRank(&opOperand);
+
if (indexingMap.getNumResults() != rank)
return op->emitOpError("expected operand rank (")
<< rank << ") to match the result rank of indexing_map #"
<< opOperand.getOperandNumber() << " ("
<< indexingMap.getNumResults() << ")";
}
-
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
@@ -1263,9 +1271,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
// Check if given shapes match to inferred shapes.
SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
-
- // Verify only static cases since we can't get exact dimension sizes and loop
- // ranges for dynamic cases in this stage.
+ // Verify only static cases since we can't get exact dimension sizes and
+ // loop ranges for dynamic cases in this stage.
if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
for (int64_t &range : endLoopRangeValues)
range -= 1;
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 730c478c2883ef..c909d13e4314b4 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -27,6 +27,7 @@
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
+#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/Matchers.h"
@@ -37,12 +38,17 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/LogicalResult.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
+#include <cassert>
#include <optional>
using namespace mlir;
@@ -149,15 +155,36 @@ static void fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion,
// iterator_types is an auto-generated method.
}
+/// Helper to create a typical indexing map for MatmulOp. Returns a list of
+/// AffineMap.
+static SmallVector<AffineMap, 3>
+getDefaultIndexingMapsForMatmul(MLIRContext *context) {
+ AffineExpr d0, d1, d2;
+ SmallVector<AffineMap, 3> indexingMaps;
+ bindDims(context, d0, d1, d2);
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context));
+ indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context));
+ return indexingMaps;
+}
+
+/// Wrapper to return the typical indexing map array attribute for MatmulOp.
+static SmallVector<Attribute> getDefaultIndexingMapAttr(MLIRContext *context) {
+ return llvm::map_to_vector(
+ getDefaultIndexingMapsForMatmul(context),
+ [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); });
+}
+
/// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
/// The result types are derived automatically if `resultTensorTypes` is none.
/// The body of the operation is filled using `regionBuilder`. All ods-gen
/// created structured operations use the method to implement their builders.
-static void buildStructuredOp(OpBuilder &b, OperationState &state,
- std::optional<TypeRange> resultTensorTypes,
- ValueRange inputs, ValueRange outputs,
- ArrayRef<NamedAttribute> attributes,
- RegionBuilderFn regionBuilder) {
+static void buildStructuredOp(
+ OpBuilder &b, OperationState &state,
+ std::optional<TypeRange> resultTensorTypes, ValueRange inputs,
+ ValueRange outputs, ArrayRef<NamedAttribute> attributes,
+ RegionBuilderFn regionBuilder,
+ std::optional<ArrayRef<AffineMap>> indexingMaps = std::nullopt) {
// Derive the result types if needed.
SmallVector<Type> derivedResultTypes =
resultTensorTypes.value_or(TypeRange());
@@ -168,6 +195,20 @@ static void buildStructuredOp(OpBuilder &b, OperationState &state,
state.addOperands(inputs);
state.addOperands(outputs);
state.addTypes(derivedResultTypes);
+
+ // Initialize indexingMaps, for MatmulOp.
+ SmallVector<Attribute, 3> indexingMapsAttrVal;
+ if (indexingMaps.has_value()) {
+ for (mlir::AffineMap map : *indexingMaps) {
+ // Convert each AffineMap to an AffineMapAttr
+ indexingMapsAttrVal.push_back(AffineMapAttr::get(map));
+ }
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ } else {
+ indexingMapsAttrVal = getDefaultIndexingMapAttr(b.getContext());
+ state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+ }
+
state.addAttributes(attributes);
state.addAttribute(
"operandSegmentSizes",
@@ -299,11 +340,48 @@ static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result,
unsigned numRegionArgs,
RegionBuilderFn regionBuilder) {
+
+ SmallVector<Attribute, 3> indexingMapsAttr;
+ Attribute mapAttr;
+ if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) {
+ if (parser.parseEqual())
+ return failure();
+
+ if (parser.parseLSquare())
+ return failure();
+
+ do {
+ if (parser.parseAttribute(mapAttr))
+ return failure();
+ if (!isa<AffineMapAttr>(mapAttr)) {
+ return parser.emitError(parser.getCurrentLocation(),
+ "expected affine map attribute");
+ }
+ indexingMapsAttr.push_back(mapAttr);
+
+ if (parser.parseOptionalComma())
+ break;
+ } while (true);
+
+ if (parser.parseRSquare())
+ return failure();
+ }
+ // Initialize indexingMaps, if not supplied explicitly.
+ if (indexingMapsAttr.empty()) {
+ indexingMapsAttr = getDefaultIndexingMapAttr(result.getContext());
+ }
+ result.addAttribute("indexing_maps",
+ parser.getBuilder().getArrayAttr(indexingMapsAttr));
+
// TODO: Enable when ods-gen supports captures.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
+ // Parse optional attributes.
+ if (parser.parseOptionalAttrDict(result.attributes))
+ return failure();
+
// TODO: consider merging results parsing into region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
@@ -329,13 +407,9 @@ static void printNamedStructuredOpResults(OpAsmPrinter &p,
}
static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
- ValueRange inputs, ValueRange outputs) {
- p.printOptionalAttrDict(
- op->getAttrs(),
- /*elidedAttrs=*/{"operandSegmentSizes",
- // See generated code in
- // LinalgNamedStructuredOps.yamlgen.cpp.inc
- "linalg.memoized_indexing_maps"});
+ ValueRange inputs, ValueRange outputs,
+ ArrayRef<StringRef> elidedAttrs = {}) {
+ p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
// Printing is shared with generic ops, except for the region and
// attributes.
@@ -3382,3 +3456,168 @@ Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
Location loc) {
return arith::ConstantOp::materialize(builder, value, type, loc);
}
+
+/// Returns true if the result AffineExpr of the \p explicitMap is same as \p
+/// defaultMap.
+static bool isValidResultDimExprs(AffineMap explictMap, AffineMap defaultMap) {
+ auto explicitRange = explictMap.getResults();
+ auto defaultRange = defaultMap.getResults();
+ DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end());
+ DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end());
+ llvm::set_union(explicitSet, defaultSet);
+ return explicitSet == defaultSet;
+}
+
+/// Returns true if the \p explictMap is broadcasted with respect to the
+/// \p defaultMap.
+static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) {
+ return explictMap.getNumResults() < defaultMap.getNumResults();
+}
+
+/// Verifies the broadcast and transpose semantic sepecified by the explicit
+/// indexing map for the MatmulOp \p op for each operand specified by \p
+/// opIndex.
+static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp,
+ unsigned opIndex) {
+ SmallVector<AffineMap, 3> opInde...
[truncated]
|
|
✅ With the latest revision this PR passed the Python code formatter. |
| @construct_and_print_in_module | ||
| def test_apply_patterns(module_): | ||
| M, N, K = 3, 5, 3 | ||
| b, M, N, K = 1, 3, 5, 3 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is fine for now, but remember, we're do the same with brgemm soon, so we'll need to (re)move this eventually for good.
rengolin
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Let's give it another go. The fixes here were suggested by the breaking PR, so I'll approve and merge. Thanks!
MaheshRavishankar
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I still dont understand whats happening in this change. Its a pretty big change but it is titled as if it is removing obsolete changes. Please describe what is happening with this change and why it is touching all these files. A 900+ line change without accurate title and description is strange.
…FC (llvm#115763) llvm#115319 added a tablegen description for an op (MatmulOp) but missed closing one of the code blocks in the description. As a result the generated docs broke, i.e. https://mlir.llvm.org/docs/Dialects/Linalg was broken after this code block.
…date failing obsolete OpDSL tests. (llvm#115319)" This reverts commit 3ad0148.
…date failing obsolete OpDSL tests. (llvm#115319)" This reverts commit 3ad0148.
…date failing obsolete OpDSL tests. (llvm#115319)" This reverts commit 3ad0148.
…#122275) Goals: 1. To add syntax and semantic to 'batch_matmul' without changing any of the existing syntax expectations for current usage. batch_matmul is still just batch_matmul. 2. Move the definition of batch_matmul from linalg OpDsl to tablegen ODS infra. Scope of this patch: To expose broadcast and transpose semantics on the 'batch_matmul'. The broadcast and transpose semantic are as follows: By default, 'linalg.batch_matmul' behavior will remain as is. Broadcast and Transpose semantics can be applied by specifying the explicit attribute 'indexing_maps' as shown below. This is a list attribute, so the list must include all the maps if specified. Example Transpose: ``` linalg.batch_matmul indexing_maps = [ affine_map< (d0, d1, d2, d3) -> (d0, d3, d1)>, //transpose affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>, affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)> ] ins (%arg0, %arg1: memref<2x5x3xf32>,memref<2x5x7xf32>) outs (%arg2: memref<2x3x7xf32>) ``` Example Broadcast: ``` linalg.batch_matmul indexing_maps = [ affine_map< (d0, d1, d2, d3) -> (d3)>, //broadcast affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>, affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)> ] ins (%arg0, %arg1: memref<5xf32>,memref<2x5x7xf32>) outs (%arg2: memref<2x3x7xf32>) ``` Example Broadcast and transpose: ``` linalg.batch_matmul indexing_maps = [ affine_map< (d0, d1, d2, d3) -> (d1, d3)>, //broadcast affine_map< (d0, d1, d2, d3) -> (d0, d2, d3)>, //transpose affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)> ] ins (%arg0, %arg1: memref<3x5xf32>, memref<2x7x5xf32>) outs (%arg2: memref<2x3x7xf32>) ``` RFCs and related PR: https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149 https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863 https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586 #115319
…atch_matmul (#122275)
Goals:
1. To add syntax and semantic to 'batch_matmul' without changing any of
the existing syntax expectations for current usage. batch_matmul is
still just batch_matmul.
2. Move the definition of batch_matmul from linalg OpDsl to tablegen ODS
infra.
Scope of this patch:
To expose broadcast and transpose semantics on the 'batch_matmul'.
The broadcast and transpose semantic are as follows:
By default, 'linalg.batch_matmul' behavior will remain as is. Broadcast
and Transpose semantics can be applied by specifying the explicit
attribute 'indexing_maps' as shown below. This is a list attribute, so
the list must include all the maps if specified.
Example Transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d0, d3, d1)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<2x5x3xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<5xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast and transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d1, d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d2, d3)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<3x5xf32>, memref<2x7x5xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
…llvm#122275) Goals: 1. To add syntax and semantic to 'batch_matmul' without changing any of the existing syntax expectations for current usage. batch_matmul is still just batch_matmul. 2. Move the definition of batch_matmul from linalg OpDsl to tablegen ODS infra. Scope of this patch: To expose broadcast and transpose semantics on the 'batch_matmul'. The broadcast and transpose semantic are as follows: By default, 'linalg.batch_matmul' behavior will remain as is. Broadcast and Transpose semantics can be applied by specifying the explicit attribute 'indexing_maps' as shown below. This is a list attribute, so the list must include all the maps if specified. Example Transpose: ``` linalg.batch_matmul indexing_maps = [ affine_map< (d0, d1, d2, d3) -> (d0, d3, d1)>, //transpose affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>, affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)> ] ins (%arg0, %arg1: memref<2x5x3xf32>,memref<2x5x7xf32>) outs (%arg2: memref<2x3x7xf32>) ``` Example Broadcast: ``` linalg.batch_matmul indexing_maps = [ affine_map< (d0, d1, d2, d3) -> (d3)>, //broadcast affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>, affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)> ] ins (%arg0, %arg1: memref<5xf32>,memref<2x5x7xf32>) outs (%arg2: memref<2x3x7xf32>) ``` Example Broadcast and transpose: ``` linalg.batch_matmul indexing_maps = [ affine_map< (d0, d1, d2, d3) -> (d1, d3)>, //broadcast affine_map< (d0, d1, d2, d3) -> (d0, d2, d3)>, //transpose affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)> ] ins (%arg0, %arg1: memref<3x5xf32>, memref<2x7x5xf32>) outs (%arg2: memref<2x3x7xf32>) ``` RFCs and related PR: https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149 https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863 https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586 llvm#115319
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of
other two variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm#115319
llvm#122275
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of
other two variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm#115319
llvm#122275
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of
other two variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm#115319
llvm#122275
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of
other two variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm#115319
llvm#122275
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of
other two variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm#115319
llvm#122275
#130944) …_reduce_matmul. This patch exposes broadcast and transpose semantics on 'batch_reduce_matmul'. This is the last one in continuation of other two variant of matmul ops. The broadcast and transpose semantic are as follows: Broadcast and Transpose semantics can be appiled by specifying the explicit attribute 'indexing_maps' as shown below. This is a list attribute, so must include maps for all arguments if specified. Example Transpose: ``` linalg.batch_reduce_matmul indexing_maps = [ affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>, affine_map<(d0, d1, d2, d3) -> (d1, d2)> ] ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>) outs(%arg2: memref<3x7xf32>) ``` Example Broadcast: ``` linalg.batch_reduce_matmul indexing_maps = [ affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>, affine_map<(d0, d1, d2, d3) -> (d1, d2)> ] ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>) outs(%arg2: memref<3x7xf32>) ``` Example Broadcast and Transpose: ``` linalg.batch_reduce_matmul indexing_maps = [ affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose affine_map<(d0, d1, d2, d3) -> (d1, d2)> ] ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>) outs(%arg2: memref<3x7xf32>) ``` RFCs and related PR: https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149 https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863 https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586 #115319 #122275
…inalg.batch… (#130944)
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of other two
variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
llvm/llvm-project#122275
… (#122275)
Goals:
1. To add syntax and semantic to 'batch_matmul' without changing any of
the existing syntax expectations for current usage. batch_matmul is
still just batch_matmul.
2. Move the definition of batch_matmul from linalg OpDsl to tablegen ODS
infra.
Scope of this patch:
To expose broadcast and transpose semantics on the 'batch_matmul'.
The broadcast and transpose semantic are as follows:
By default, 'linalg.batch_matmul' behavior will remain as is. Broadcast
and Transpose semantics can be applied by specifying the explicit
attribute 'indexing_maps' as shown below. This is a list attribute, so
the list must include all the maps if specified.
Example Transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d0, d3, d1)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<2x5x3xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<5xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast and transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d1, d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d2, d3)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<3x5xf32>, memref<2x7x5xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
…… (#130944)
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of other two
variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
llvm/llvm-project#122275
… (#122275)
Goals:
1. To add syntax and semantic to 'batch_matmul' without changing any of
the existing syntax expectations for current usage. batch_matmul is
still just batch_matmul.
2. Move the definition of batch_matmul from linalg OpDsl to tablegen ODS
infra.
Scope of this patch:
To expose broadcast and transpose semantics on the 'batch_matmul'.
The broadcast and transpose semantic are as follows:
By default, 'linalg.batch_matmul' behavior will remain as is. Broadcast
and Transpose semantics can be applied by specifying the explicit
attribute 'indexing_maps' as shown below. This is a list attribute, so
the list must include all the maps if specified.
Example Transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d0, d3, d1)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<2x5x3xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<5xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast and transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d1, d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d2, d3)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<3x5xf32>, memref<2x7x5xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
…… (#130944)
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of other two
variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
llvm/llvm-project#122275
… (#122275)
Goals:
1. To add syntax and semantic to 'batch_matmul' without changing any of
the existing syntax expectations for current usage. batch_matmul is
still just batch_matmul.
2. Move the definition of batch_matmul from linalg OpDsl to tablegen ODS
infra.
Scope of this patch:
To expose broadcast and transpose semantics on the 'batch_matmul'.
The broadcast and transpose semantic are as follows:
By default, 'linalg.batch_matmul' behavior will remain as is. Broadcast
and Transpose semantics can be applied by specifying the explicit
attribute 'indexing_maps' as shown below. This is a list attribute, so
the list must include all the maps if specified.
Example Transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d0, d3, d1)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<2x5x3xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<5xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast and transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d1, d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d2, d3)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<3x5xf32>, memref<2x7x5xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
…… (#130944)
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of other two
variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
llvm/llvm-project#122275
… (#122275)
Goals:
1. To add syntax and semantic to 'batch_matmul' without changing any of
the existing syntax expectations for current usage. batch_matmul is
still just batch_matmul.
2. Move the definition of batch_matmul from linalg OpDsl to tablegen ODS
infra.
Scope of this patch:
To expose broadcast and transpose semantics on the 'batch_matmul'.
The broadcast and transpose semantic are as follows:
By default, 'linalg.batch_matmul' behavior will remain as is. Broadcast
and Transpose semantics can be applied by specifying the explicit
attribute 'indexing_maps' as shown below. This is a list attribute, so
the list must include all the maps if specified.
Example Transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d0, d3, d1)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<2x5x3xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<5xf32>,memref<2x5x7xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
Example Broadcast and transpose:
```
linalg.batch_matmul indexing_maps = [
affine_map< (d0, d1, d2, d3) -> (d1, d3)>, //broadcast
affine_map< (d0, d1, d2, d3) -> (d0, d2, d3)>, //transpose
affine_map< (d0, d1, d2, d3) -> (d0, d1, d2)>
]
ins (%arg0, %arg1: memref<3x5xf32>, memref<2x7x5xf32>)
outs (%arg2: memref<2x3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
…… (#130944)
…_reduce_matmul.
This patch exposes broadcast and transpose semantics on
'batch_reduce_matmul'. This is the last one in continuation of other two
variant of matmul ops.
The broadcast and transpose semantic are as follows:
Broadcast and Transpose semantics can be appiled by specifying the
explicit attribute 'indexing_maps' as shown below. This is a list
attribute, so must include maps for all arguments if specified.
Example Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<2x5x3xf32>,memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)>,
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<2x5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and Transpose:
```
linalg.batch_reduce_matmul indexing_maps = [
affine_map<(d0, d1, d2, d3) -> (d1, d3)>, // broadcast
affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>, // transpose
affine_map<(d0, d1, d2, d3) -> (d1, d2)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<2x7x5xf32>)
outs(%arg2: memref<3x7xf32>)
```
RFCs and related PR:
https://discourse.llvm.org/t/rfc-linalg-opdsl-constant-list-attribute-definition/80149
https://discourse.llvm.org/t/rfc-op-explosion-in-linalg/82863
https://discourse.llvm.org/t/rfc-mlir-linalg-operation-tree/83586
llvm/llvm-project#115319
llvm/llvm-project#122275
The earlier PR(#104783) which introduces
transpose and broadcast semantic to linalg.matmul was reverted due to two failing
OpDSL test for linalg.matmul.
Since linalg.matmul is now defined using TableGen ODS instead of Python-based OpDSL,
these test started failing and needs to be removed/updated.
This commit removes/updates the failing obsolete tests from below files. All other files
were part of earlier PR and just cherry picked.
"mlir/test/python/integration/dialects/linalg/opsrun.py"
"mlir/test/python/integration/dialects/transform.py"