Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions langchain_postgres/v2/async_vectorstore.py
Original file line number Diff line number Diff line change
Expand Up @@ -561,10 +561,12 @@ async def __query_collection(
inline_embed_func = getattr(self.embedding_service, "embed_query_inline", None)
if not embedding and callable(inline_embed_func) and "query" in kwargs:
query_embedding = self.embedding_service.embed_query_inline(kwargs["query"]) # type: ignore
embedding_data_string = f"{query_embedding}"
else:
query_embedding = f"{[float(dimension) for dimension in embedding]}"
stmt = f"""SELECT {column_names}, {search_function}("{self.embedding_column}", :query_embedding) as distance
FROM "{self.schema_name}"."{self.table_name}" {param_filter} ORDER BY "{self.embedding_column}" {operator} :query_embedding LIMIT :k;
embedding_data_string = ":query_embedding"
stmt = f"""SELECT {column_names}, {search_function}("{self.embedding_column}", {embedding_data_string}) as distance
FROM "{self.schema_name}"."{self.table_name}" {param_filter} ORDER BY "{self.embedding_column}" {operator} {embedding_data_string} LIMIT :k;
"""
param_dict = {"query_embedding": query_embedding, "k": k}
if filter_dict:
Expand Down