Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions neural_compressor/transformers/models/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,9 +180,7 @@ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
assert hasattr(torch, "xpu") and torch.xpu.is_available(), "There is no xpu device in this system!"
quantization_config.update(**{"device": "xpu"})
quantization_config.post_init_xpu()
if (
not torch.cuda.is_available() or device_map == "cpu" or device_map == torch.device("cpu")
) and model.config.model_type == "chatglm":
if (device_map == "cpu" or device_map == torch.device("cpu")) and model.config.model_type == "chatglm":
model = model.float()
model = convert_to_quantized_model(model, quantization_config, device=device_map)
if isinstance(quantization_config, AwqConfig):
Expand Down
28 changes: 13 additions & 15 deletions neural_compressor/transformers/quantization/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,30 +223,28 @@ def _replace_linear(
module.qzeros if hasattr(module, "qzeros") else None,
g_idx,
)
if not hasattr(module, "qweight"):
n_pack = 32 // quantization_config.bits

weight = torch.zeros(
(math.ceil(in_features / n_pack), out_features),
dtype=torch.int32,
device=torch.device(device),
)
model._modules[name].set_weights_bias(
module.qweight.data if hasattr(module, "qweight") else weight,
None if module.bias is None else module.bias.data,
)
else:
raise Exception("{} device Unsupported weight only quantization!".format(device))

is_replaced = True
is_removed = True
# Store the module class in case we need to transpose the weight later
model._modules[name].source_cls = type(module)
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(False)

if device == "xpu" or device == torch.device("xpu"):
if not hasattr(module, "qweight"):
n_pack = 32 // quantization_config.bits

weight = torch.zeros(
(math.ceil(in_features / n_pack), out_features),
dtype=torch.int32,
device=torch.device(device),
)
model._modules[name].set_weights_bias(
module.qweight.data if hasattr(module, "qweight") else weight,
None if module.bias is None else module.bias.data,
)
is_removed = True

if not is_removed and len(list(module.children())) > 0: # pylint: disable=E1101
_, is_replaced = _replace_linear(
module,
Expand Down