Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions neural_compressor/utils/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -507,6 +507,9 @@ def recover_model_from_json(model, json_file_path, example_inputs):
if isinstance(example_inputs, dict):
model(**example_inputs)
model(**example_inputs)
elif isinstance(example_inputs, tuple) or isinstance(example_inputs, list):
model(*example_inputs)
model(*example_inputs)
else:
model(example_inputs)
model(example_inputs)
Expand Down
28 changes: 14 additions & 14 deletions test/model/test_model_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,19 +114,19 @@ def test_WeightOnlyLinear(self):
for dtype in compression_dtype:
new_model = Model()
inc_model = INCModel(new_model)
inc_model.export_compressed_model(
compressed_model = inc_model.export_compressed_model(
qweight_config_path="saved/qconfig.json",
compression_dtype=dtype,
scale_dtype=torch.float32,
use_optimum_format=False,
)
out2 = q_model(input)
torch.save(inc_model.state_dict(), "saved/tmp.pt")
torch.save(compressed_model.state_dict(), "saved/tmp.pt")
model_size2 = os.path.getsize("saved/tmp.pt") / 1024
print("WeightOnlyLinear Model size:{:.3f}M".format(model_size2))
self.assertTrue(isinstance(inc_model.model.fc1, WeightOnlyLinear))
self.assertTrue(inc_model.model.fc1.qweight.dtype == dtype)
self.assertTrue(inc_model.model.fc1.scales.dtype == torch.float32)
self.assertTrue(isinstance(compressed_model.fc1, WeightOnlyLinear))
self.assertTrue(compressed_model.fc1.qweight.dtype == dtype)
self.assertTrue(compressed_model.fc1.scales.dtype == torch.float32)
self.assertTrue(model_size1 / model_size2 > 2)
self.assertTrue(torch.all(torch.isclose(out1, out2, atol=5e-1)))

Expand All @@ -135,35 +135,35 @@ def test_WeightOnlyLinear(self):
for dim in compress_dims:
new_model = Model()
inc_model = INCModel(new_model)
inc_model.export_compressed_model(
compressed_model = inc_model.export_compressed_model(
qweight_config_path="saved/qconfig.json",
compression_dim=dim,
use_optimum_format=False,
)
out2 = q_model(input)
torch.save(inc_model.state_dict(), "saved/tmp.pt")
torch.save(compressed_model.state_dict(), "saved/tmp.pt")
model_size2 = os.path.getsize("saved/tmp.pt") / 1024
print("WeightOnlyLinear Model size:{:.3f}M".format(model_size2))
self.assertTrue(isinstance(inc_model.model.fc1, WeightOnlyLinear))
self.assertTrue(isinstance(compressed_model.fc1, WeightOnlyLinear))
if dim == 1:
self.assertTrue(inc_model.model.fc1.qweight.shape[0] == inc_model.model.fc1.out_features)
self.assertTrue(compressed_model.fc1.qweight.shape[1] != compressed_model.fc1.in_features)
else:
self.assertTrue(inc_model.model.fc1.qweight.shape[1] == inc_model.model.fc1.in_features)
self.assertTrue(compressed_model.fc1.qweight.shape[0] != compressed_model.fc1.out_features)
self.assertTrue(model_size1 / model_size2 > 2)
self.assertTrue(torch.all(torch.isclose(out1, out2, atol=5e-1)))

# test half dtype
new_model = Model()
inc_model = INCModel(new_model)
inc_model.export_compressed_model(
compressed_model = inc_model.export_compressed_model(
qweight_config_path="saved/qconfig.json",
)
out2 = q_model(input)
torch.save(inc_model.state_dict(), "saved/tmp.pt")
torch.save(compressed_model.state_dict(), "saved/tmp.pt")
model_size2 = os.path.getsize("saved/tmp.pt") / 1024
print("WeightOnlyLinear Model size:{:.3f}M".format(model_size2))
self.assertTrue(isinstance(inc_model.model.fc1, WeightOnlyLinear))
self.assertTrue(inc_model.model.fc1.scales.dtype == torch.float16)
self.assertTrue(isinstance(compressed_model.fc1, WeightOnlyLinear))
self.assertTrue(compressed_model.fc1.scales.dtype == torch.float16)
self.assertTrue(model_size1 / model_size2 > 2)
self.assertTrue(torch.all(torch.isclose(out1, out2, atol=5e-1)))

Expand Down