Skip to content

Commit c510969

Browse files
authored
Remove some redundant classes for quantization, benchmark and mixed precision (#840)
Signed-off-by: Cheng, Penghui <[email protected]>
1 parent 52b661c commit c510969

File tree

84 files changed

+1148
-1835
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

84 files changed

+1148
-1835
lines changed

docs/source/benchmark.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ And please make sure `cores_per_instance * num_of_instance` must be less than CP
4949
from neural_compressor.config import BenchmarkConfig
5050
from neural_compressor.benchmark import fit
5151
conf = BenchmarkConfig(warmup=10, iteration=100, cores_per_instance=4, num_of_instance=7)
52-
fit(model='./int8.pb', config=conf, b_dataloader=eval_dataloader)
52+
fit(model='./int8.pb', conf=conf, b_dataloader=eval_dataloader)
5353
```
5454

5555
## Examples

docs/source/mixed_precision.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -42,8 +42,8 @@ Supported precisions for mix precision include bf16 and fp16. If users want to g
4242
from neural_compressor import mix_precision
4343
from neural_compressor.config import MixedPrecisionConfig
4444

45-
conf = MixedPrecisionConfig(precision='bf16')
46-
converted_model = mix_precision.fit(model, config=conf)
45+
conf = MixedPrecisionConfig() # default precision is bf16
46+
converted_model = mix_precision.fit(model, conf=conf)
4747
converted_model.save('./path/to/save/')
4848
```
4949

@@ -56,8 +56,8 @@ from neural_compressor.config import MixedPrecisionConfig
5656
conf = MixedPrecisionConfig(
5757
backend='onnxrt_cuda_ep',
5858
device='gpu',
59-
precision='fp16')
60-
converted_model = mix_precision.fit(model, config=conf)
59+
precisions='fp16')
60+
converted_model = mix_precision.fit(model, conf=conf)
6161
converted_model.save('./path/to/save/')
6262
```
6363

docs/source/pruning.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -301,7 +301,8 @@ The following section exemplifies how to use hooks in user pass-in training func
301301
[**Experimental option** ]Modify model and optimizer.
302302

303303
```python
304-
from neural_compressor.training import prepare_pruning, WeightPruningConfig
304+
from neural_compressor import WeightPruningConfig
305+
from neural_compressor.experimental.compression import prepare_pruning
305306
config = WeightPruningConfig(configs)
306307
prepare_pruning(config, model, optimizer) # modify model and optimizer
307308
for epoch in range(num_train_epochs):

examples/helloworld/tf_example5/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ python test.py --benchmark --dataset_location=/path/to/imagenet/
5252
```python
5353
from neural_compressor.benchmark import fit
5454
conf = BenchmarkConfig(iteration=100, cores_per_instance=4, num_of_instance=1)
55-
fit(model='./int8.pb', config=conf, b_dataloader=eval_dataloader)
55+
fit(model='./int8.pb', conf=conf, b_dataloader=eval_dataloader)
5656

5757
```
5858

examples/keras/image_recognition/inception_resnet_v2/quantization/ptq/main.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@ def main(_):
119119
if FLAGS.tune:
120120
from neural_compressor.quantization import fit
121121
from neural_compressor.config import PostTrainingQuantConfig
122-
from neural_compressor.utils.utility import set_random_seed
122+
from neural_compressor import set_random_seed
123123
set_random_seed(9527)
124124
config = PostTrainingQuantConfig(backend='itex',
125125
calibration_sampling_size=[20, 150])
@@ -139,7 +139,7 @@ def main(_):
139139
fit(FLAGS.input_model, conf, b_func=evaluate)
140140
else:
141141
from neural_compressor.model.model import Model
142-
accuracy = evaluate(Model(FLAGS.input_model, backend='keras').model)
142+
accuracy = evaluate(Model(FLAGS.input_model, backend='itex').model)
143143
logger.info('Batch size = %d' % FLAGS.batch_size)
144144
logger.info("Accuracy: %.5f" % accuracy)
145145

examples/keras/image_recognition/inception_v3/quantization/ptq/main.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@ def main(_):
119119
if FLAGS.tune:
120120
from neural_compressor.quantization import fit
121121
from neural_compressor.config import PostTrainingQuantConfig
122-
from neural_compressor.utils.utility import set_random_seed
122+
from neural_compressor import set_random_seed
123123
set_random_seed(9527)
124124
config = PostTrainingQuantConfig(backend='itex',
125125
calibration_sampling_size=[50, 100])
@@ -139,9 +139,10 @@ def main(_):
139139
fit(FLAGS.input_model, conf, b_func=evaluate)
140140
else:
141141
from neural_compressor.model.model import Model
142-
accuracy = evaluate(Model(FLAGS.input_model, backend='keras').model)
142+
accuracy = evaluate(Model(FLAGS.input_model, backend='itex').model)
143143
logger.info('Batch size = %d' % FLAGS.batch_size)
144144
logger.info("Accuracy: %.5f" % accuracy)
145145

146+
146147
if __name__ == "__main__":
147148
tf.compat.v1.app.run()

examples/keras/image_recognition/mobilenet_v2/quantization/ptq/main.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ def main(_):
118118
if FLAGS.tune:
119119
from neural_compressor.quantization import fit
120120
from neural_compressor.config import PostTrainingQuantConfig
121-
from neural_compressor.utils.utility import set_random_seed
121+
from neural_compressor import set_random_seed
122122
set_random_seed(9527)
123123
config = PostTrainingQuantConfig(backend='itex',
124124
calibration_sampling_size=[50, 100])
@@ -138,7 +138,7 @@ def main(_):
138138
fit(FLAGS.input_model, conf, b_func=evaluate)
139139
else:
140140
from neural_compressor.model.model import Model
141-
accuracy = evaluate(Model(FLAGS.input_model, backend='keras').model)
141+
accuracy = evaluate(Model(FLAGS.input_model, backend='itex').model)
142142
logger.info('Batch size = %d' % FLAGS.batch_size)
143143
logger.info("Accuracy: %.5f" % accuracy)
144144

examples/keras/image_recognition/resnet101/quantization/ptq/main.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ def main(_):
125125
if FLAGS.tune:
126126
from neural_compressor.quantization import fit
127127
from neural_compressor.config import PostTrainingQuantConfig
128-
from neural_compressor.utils.utility import set_random_seed
128+
from neural_compressor import set_random_seed
129129
set_random_seed(9524)
130130
config = PostTrainingQuantConfig(backend='itex',
131131
calibration_sampling_size=[10, 15])
@@ -145,7 +145,7 @@ def main(_):
145145
fit(FLAGS.input_model, conf, b_func=evaluate)
146146
else:
147147
from neural_compressor.model.model import Model
148-
accuracy = evaluate(Model(FLAGS.input_model, backend='keras').model)
148+
accuracy = evaluate(Model(FLAGS.input_model, backend='itex').model)
149149
logger.info('Batch size = %d' % FLAGS.batch_size)
150150
logger.info("Accuracy: %.5f" % accuracy)
151151

examples/keras/image_recognition/resnet50/quantization/ptq/main.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ def eval_func(dataloader, metric):
110110
return acc
111111

112112
def main(_):
113-
from neural_compressor.utils import set_random_seed
113+
from neural_compressor import set_random_seed
114114
set_random_seed(9527)
115115
if FLAGS.tune:
116116
from neural_compressor import quantization
@@ -130,7 +130,7 @@ def main(_):
130130
fit(FLAGS.input_model, conf, b_func=evaluate)
131131
else:
132132
from neural_compressor.model import Model
133-
model = Model(FLAGS.input_model, backend='keras').model
133+
model = Model(FLAGS.input_model, backend='itex').model
134134
accuracy = evaluate(model)
135135
print('Batch size = %d' % FLAGS.batch_size)
136136
print("Accuracy: %.5f" % accuracy)

examples/keras/image_recognition/resnet50_fashion/quantization/ptq/main.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ def eval_func(data_loader, metric):
100100
return acc
101101

102102
def main(_):
103-
from neural_compressor.utils import set_random_seed
103+
from neural_compressor import set_random_seed
104104
set_random_seed(9527)
105105
if FLAGS.tune:
106106
from neural_compressor import quantization
@@ -128,7 +128,7 @@ def main(_):
128128
fit(FLAGS.input_model, conf, b_func=evaluate)
129129
else:
130130
from neural_compressor.model import Model
131-
model = Model(FLAGS.input_model, backend='keras').model
131+
model = Model(FLAGS.input_model, backend='itex').model
132132
accuracy = evaluate(model)
133133
print('Batch size = %d' % FLAGS.batch_size)
134134
print("Accuracy: %.5f" % accuracy)

0 commit comments

Comments
 (0)