Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,14 @@
from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from ...utils import logging
from . import StableDiffusionPipelineOutput
from .safety_checker import StableDiffusionSafetyChecker


logger = logging.get_logger(__name__) # pylint: disable=invalid-name


class StableDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
Expand Down Expand Up @@ -188,22 +192,30 @@ def __call__(
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

# get prompt text embeddings
text_input = self.tokenizer(
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
text_input_ids = text_inputs.input_ids

if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]

# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,10 +12,14 @@
from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from ...utils import logging
from . import StableDiffusionPipelineOutput
from .safety_checker import StableDiffusionSafetyChecker


logger = logging.get_logger(__name__) # pylint: disable=invalid-name


def preprocess(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
Expand Down Expand Up @@ -216,22 +220,30 @@ def __call__(
init_latents = self.scheduler.add_noise(init_latents, noise, timesteps).to(self.device)

# get prompt text embeddings
text_input = self.tokenizer(
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
text_input_ids = text_inputs.input_ids

if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]

# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -249,22 +249,30 @@ def __call__(
init_latents = self.scheduler.add_noise(init_latents, noise, timesteps)

# get prompt text embeddings
text_input = self.tokenizer(
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
text_input_ids = text_inputs.input_ids

if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]

# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,13 @@
from ...onnx_utils import OnnxRuntimeModel
from ...pipeline_utils import DiffusionPipeline
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from ...utils import logging
from . import StableDiffusionPipelineOutput


logger = logging.get_logger(__name__)


class StableDiffusionOnnxPipeline(DiffusionPipeline):
vae_decoder: OnnxRuntimeModel
text_encoder: OnnxRuntimeModel
Expand Down Expand Up @@ -66,22 +70,30 @@ def __call__(
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

# get prompt text embeddings
text_input = self.tokenizer(
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
return_tensors="pt",
)
text_embeddings = self.text_encoder(input_ids=text_input.input_ids.astype(np.int32))[0]
text_input_ids = text_inputs.input_ids

if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]

# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
)
Expand Down