Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion src/diffusers/models/unet_2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,6 @@ def __init__(
def forward(
self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int]
) -> Dict[str, torch.FloatTensor]:

# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
Expand Down
3 changes: 0 additions & 3 deletions src/diffusers/models/unet_2d_condition.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,6 @@ def forward(
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
) -> Dict[str, torch.FloatTensor]:

# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
Expand All @@ -145,7 +144,6 @@ def forward(
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:

if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
sample, res_samples = downsample_block(
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
Expand All @@ -160,7 +158,6 @@ def forward(

# 5. up
for upsample_block in self.up_blocks:

res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

Expand Down
3 changes: 0 additions & 3 deletions src/diffusers/models/unet_blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -947,7 +947,6 @@ def __init__(

def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
for resnet, attn in zip(self.resnets, self.attentions):

# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
Expand Down Expand Up @@ -1027,7 +1026,6 @@ def __init__(

def forward(self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None):
for resnet, attn in zip(self.resnets, self.attentions):

# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
Expand Down Expand Up @@ -1091,7 +1089,6 @@ def __init__(

def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
for resnet in self.resnets:

# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
Expand Down
1 change: 0 additions & 1 deletion src/diffusers/pipeline_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,6 @@


class DiffusionPipeline(ConfigMixin):

config_name = "model_index.json"

def register_modules(self, **kwargs):
Expand Down
1 change: 0 additions & 1 deletion src/diffusers/pipelines/ddim/pipeline_ddim.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ def __init__(self, unet, scheduler):

@torch.no_grad()
def __call__(self, batch_size=1, generator=None, eta=0.0, num_inference_steps=50, output_type="pil", **kwargs):

if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
warnings.warn(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -630,7 +630,6 @@ def forward(
output_hidden_states=None,
return_dict=None,
):

outputs = self.model(
input_ids,
attention_mask=attention_mask,
Expand Down
17 changes: 15 additions & 2 deletions src/diffusers/pipelines/pndm/pipeline_pndm.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,20 +15,33 @@


import warnings
from typing import Optional

import torch

from ...models import UNet2DModel
from ...pipeline_utils import DiffusionPipeline
from ...schedulers import PNDMScheduler


class PNDMPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
unet: UNet2DModel
scheduler: PNDMScheduler

def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(unet=unet, scheduler=scheduler)

@torch.no_grad()
def __call__(self, batch_size=1, generator=None, num_inference_steps=50, output_type="pil", **kwargs):
def __call__(
self,
batch_size: int = 1,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
**kwargs,
):
# For more information on the sampling method you can take a look at Algorithm 2 of
# the official paper: https://arxiv.org/pdf/2202.09778.pdf

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,6 @@ def __call__(
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
):

if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,6 @@ def __call__(
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
):

if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
Expand Down
1 change: 0 additions & 1 deletion src/diffusers/schedulers/scheduling_ddim.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@ def __init__(
set_alpha_to_one=True,
tensor_format="pt",
):

if beta_schedule == "linear":
self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
elif beta_schedule == "scaled_linear":
Expand Down
1 change: 0 additions & 1 deletion src/diffusers/schedulers/scheduling_ddpm.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,6 @@ def __init__(
clip_sample=True,
tensor_format="pt",
):

if trained_betas is not None:
self.betas = np.asarray(trained_betas)
elif beta_schedule == "linear":
Expand Down
1 change: 0 additions & 1 deletion src/diffusers/schedulers/scheduling_pndm.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,6 @@ def __init__(
tensor_format="pt",
skip_prk_steps=False,
):

if beta_schedule == "linear":
self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
elif beta_schedule == "scaled_linear":
Expand Down
1 change: 0 additions & 1 deletion src/diffusers/schedulers/scheduling_sde_vp.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@
class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin):
@register_to_config
def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3, tensor_format="np"):

self.sigmas = None
self.discrete_sigmas = None
self.timesteps = None
Expand Down
1 change: 0 additions & 1 deletion src/diffusers/schedulers/scheduling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@


class SchedulerMixin:

config_name = SCHEDULER_CONFIG_NAME
ignore_for_config = ["tensor_format"]

Expand Down
4 changes: 0 additions & 4 deletions src/diffusers/utils/logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,17 +65,14 @@ def _get_default_logging_level():


def _get_library_name() -> str:

return __name__.split(".")[0]


def _get_library_root_logger() -> logging.Logger:

return logging.getLogger(_get_library_name())


def _configure_library_root_logger() -> None:

global _default_handler

with _lock:
Expand All @@ -93,7 +90,6 @@ def _configure_library_root_logger() -> None:


def _reset_library_root_logger() -> None:

global _default_handler

with _lock:
Expand Down