Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 46 additions & 15 deletions src/diffusers/models/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -286,6 +286,32 @@ def __init__(
self.rescale_output_factor = rescale_output_factor
self.proj_attn = nn.Linear(channels, channels, 1)

self._use_memory_efficient_attention_xformers = False

def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if not is_xformers_available():
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.num_heads
Expand Down Expand Up @@ -320,21 +346,26 @@ def forward(self, hidden_states):
key_proj = self.reshape_heads_to_batch_dim(key_proj)
value_proj = self.reshape_heads_to_batch_dim(value_proj)

attention_scores = torch.baddbmm(
torch.empty(
query_proj.shape[0],
query_proj.shape[1],
key_proj.shape[1],
dtype=query_proj.dtype,
device=query_proj.device,
),
query_proj,
key_proj.transpose(-1, -2),
beta=0,
alpha=scale,
)
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
hidden_states = torch.bmm(attention_probs, value_proj)
if self._use_memory_efficient_attention_xformers:
# Memory efficient attention
hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
hidden_states = hidden_states.to(query_proj.dtype)
else:
attention_scores = torch.baddbmm(
torch.empty(
query_proj.shape[0],
query_proj.shape[1],
key_proj.shape[1],
dtype=query_proj.dtype,
device=query_proj.device,
),
query_proj,
key_proj.transpose(-1, -2),
beta=0,
alpha=scale,
)
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
hidden_states = torch.bmm(attention_probs, value_proj)

# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
Expand Down