-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Description
Is your feature request related to a problem? Please describe.
Many important functions and classes are missing type hints
Describe the solution you'd like
It would be great if the following functions could have better type hints to understand what input is expected.
Models
-
-
diffusers/src/diffusers/models/unet_2d.py
Line 14 in 7e1b202
def __init__(
-
-
-
def __init__(
-
-
-
diffusers/src/diffusers/models/vae.py
Line 394 in 7e1b202
def __init__(
-
-
-
diffusers/src/diffusers/models/vae.py
Line 443 in 7e1b202
def forward(self, sample, sample_posterior=False):
-
-
-
diffusers/src/diffusers/models/vae.py
Line 432 in 7e1b202
def encode(self, x):
-
-
-
diffusers/src/diffusers/models/vae.py
Line 438 in 7e1b202
def decode(self, z):
-
-
-
diffusers/src/diffusers/models/vae.py
Line 328 in 7e1b202
def __init__(
-
-
-
diffusers/src/diffusers/models/vae.py
Line 370 in 7e1b202
def encode(self, x):
-
-
-
diffusers/src/diffusers/models/vae.py
Line 375 in 7e1b202
def decode(self, h, force_not_quantize=False):
-
-
-
diffusers/src/diffusers/models/vae.py
Line 385 in 7e1b202
def forward(self, sample):
-
-
-
diffusers/src/diffusers/models/vae.py
Line 296 in 7e1b202
def sample(self, generator=None):
-
Schedulers
-
-
def __init__(
-
-
-
def set_timesteps(self, num_inference_steps, offset=0):
-
-
-
def add_noise(self, original_samples, noise, timesteps):
-
-
-
def __init__(
-
-
-
def set_timesteps(self, num_inference_steps):
-
-
-
def add_noise(self, original_samples, noise, timesteps):
-
-
-
def __init__(
-
-
-
def set_timesteps(self, num_inference_steps):
-
-
-
def add_noise_to_input(self, sample, sigma, generator=None):
-
-
-
def __init__(
-
-
-
def set_timesteps(self, num_inference_steps):
-
-
-
def add_noise(self, original_samples, noise, timesteps):
-
-
-
def __init__(
-
-
-
def set_timesteps(self, num_inference_steps, offset=0):
-
-
-
def add_noise(self, original_samples, noise, timesteps):
-
-
-
def __init__(
-
-
-
def set_timesteps(self, num_inference_steps, sampling_eps=None):
-
-
-
def set_sigmas(self, num_inference_steps, sigma_min=None, sigma_max=None, sampling_eps=None):
-
Pipelines
-
-
def __call__(self, batch_size=1, generator=None, eta=0.0, num_inference_steps=50, output_type="pil", **kwargs):
-
-
-
def __call__(self, batch_size=1, generator=None, output_type="pil", **kwargs):
-
-
-
def __init__(self, vqvae, bert, tokenizer, unet, scheduler):
-
-
-
diffusers/src/diffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py
Line 10 in 7e1b202
def __init__(self, vqvae, unet, scheduler):
-
-
-
diffusers/src/diffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py
Line 16 in 7e1b202
def __call__(self, batch_size=1, generator=None, eta=0.0, num_inference_steps=50, output_type="pil", **kwargs):
-
-
-
def __call__(self, batch_size=1, generator=None, num_inference_steps=50, output_type="pil", **kwargs):
-
-
-
def __init__(self, unet, scheduler):
-
-
-
def __init__(self, unet, scheduler):
-
-
-
def __call__(self, batch_size=1, num_inference_steps=2000, generator=None, output_type="pil", **kwargs):
-
-
-
diffusers/src/diffusers/pipelines/stochatic_karras_ve/pipeline_stochastic_karras_ve.py
Line 24 in 7e1b202
def __init__(self, unet, scheduler):
-
-
-
diffusers/src/diffusers/pipelines/stochatic_karras_ve/pipeline_stochastic_karras_ve.py
Line 30 in 7e1b202
def __call__(self, batch_size=1, num_inference_steps=50, generator=None, output_type="pil", **kwargs):
-