-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Open
Labels
Description
Describe the bug
Only about half of my cpus are used.
I have 8 cores, but only 4 are used. Is there way to fix this?


^ The spikes are when diffussers is generating something
Reproduction
My code:
print("Hello, World")
import secrets
import gradio as gr
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from PIL import Image
print("Deps loaded!")
model_id = "CompVis/stable-diffusion-v1-4"
device = "cpu"
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True)
pipe = pipe.to(device)
print("Loaded!")
def predict(name):
print(f"Prompt: {name}")
prompt = name
with autocast("cuda"):
image = pipe(prompt, guidance_scale=7.5, width=512, height=512, num_inference_steps=20).images[0]
id = secrets.token_urlsafe(16)
image.save(f"./out/{id}.png")
return image
print("Starting...")
demo = gr.Interface(
predict,
inputs=[
gr.inputs.Textbox(label='Prompt', default='a chalk pastel drawing of a llama wearing a wizard hat')
],
outputs=gr.Image(shape=[512,512], type="pil", elem_id="output_image"),
css="#output_image{width: 512px; height: 512px}",
title="Retslav - Text To Image - Stable Diffusion",
description="Retslav Stable Diffussion",
)
demo.launch(server_port=3000)Logs
-System Info
diffusersversion: 0.6.0- Platform: Linux-5.4.0-125-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyTorch version (GPU?): 1.13.0+cpu (False)
- Huggingface_hub version: 0.10.1
- Transformers version: 4.23.1
- Using GPU in script?: NO
- Using distributed or parallel set-up in script?: NO