A comprehensive Rust library for actuarial mortality table calculations and life insurance mathematics, featuring an elegant builder pattern that makes complex actuarial calculations intuitive and type-safe.
π Performance & Memory Efficiency:
- Leveraging Rust's zero-cost abstractions for maximum performance
- Polars integration for efficient DataFrame operations with zero-copy optimization
- Minimal memory allocation with smart data reuse and lazy evaluation
- Compile-time optimizations eliminate runtime overhead
π― Developer Experience:
- Intuitive Builder Pattern: Only specify parameters you need, no confusing parameter lists. RSLife ensures that the low level interfaces are even more approachable than the high level ones.
- Type Safety: Compile-time validation prevents common actuarial calculation errors
- Auto-Completion: IDEs provide intelligent suggestions for all parameters
- Self-Documenting: Parameter names make code intent crystal clear
- Cross-Field Validation: Parameter combinations validated automatically
π Intelligent Data Processing:
- Universal Input: DataFrames, XLSX/ODS files, and loading directly from Society of Actuary (US) and Institute and Faculty of Actuaries (UK) Mortality Database with automatic format detection
- Format Agnostic: Seamlessly detects
qx
rates orlx
survivor functions without manual specification - Smart Table Recognition: Automatically determines ultimate vs select mortality tables
- Validation Built-In: Comprehensive data integrity checks prevent runtime errors before calculations
- Select & Ultimate: Full support for both table types with automatic recognition
π§ Production Ready:
- Complete Actuarial Coverage: Life insurance, annuities,survival functions and commutations with standard notation
- Multiple Assumptions: Uniform Death Distribution (UDD), Constant Force of Mortality (CFM), and Hyperbolic (HPB) methods for fractional age calculations
- Multiple Parametric Life Table Models: Constant Force Law, Gompertz, and Makeham, Weibull etc...
- Consistent API: All functions use the same parameter structure with builder pattern
- Battle-Tested: Validated against standard actuarial references from SOA and IFOA most trusted materials.
- Error Handling: Clear, actionable error messages for debugging
Add the crate dependency
cargo add rslife
Or add this to your Cargo.toml
:
[dependencies]
rslife = "0.2.8"
The crate is designed with three main layers to make actuarial computations convenient (more on architecture from Wiki), as illustrated below:
use rslife::prelude::*;
fn main() -> RSLifeResult<()> {
// ========= FIRST LAYER - MORTALILITY DATA LOAD=========
// Load mortality data
// This seperation layer consists of multiple methods with flexibility at user hand to formulate the mortality or morbidity data
let data = MortData::from_ifoa_url_id("AM92")?;
// ========= SECOND LAYER - MORTALILITY TABLE CONFIGURATION =========
// Construct Mortality Table Config
// This layer is more rigid but still allows some configuration to mortality table
let mt = MortTableConfig::builder()
.data(data)
.radix(100_000) // Radix of 100k instead of default 10k
.pct(1.5) // 150% mortality rate instead of default 100%
.assumption(AssumptionEnum::CFM) // CFM assumption instead of default UDD assumtpion
.build()?;
// ========= THIRD LAYER - CALCULATIONS =========
// New builder pattern for actuarial calculations!
// This is the layer to perform calculation. Variables are only declared when needed - Consistent with actuarial notation principle.
let fractional_age_time_survival_rate = tpx()
.mt(&mt)
.x(35.5)
.t(5.8)
.entry_age(33)
.call()?;
let life_annuity = aax()
.mt(&mt)
.i(0.03)
.x(65)
.m(12) // monthly payable m=12
.call()?;
let deferred_term = Ax1n()
.mt(&mt)
.i(0.03)
.x(35)
.n(15)
.entry_age(34) // Entry age for selected effect - duration
.t(5) // Deferred 5 years
.call()?;
Ok(())
}
RSLife supports flexible mortality data input with automatic qx
/lx
detection.
Detail guide can be found on project wiki
An example of parametric life table model
// Parametric life table model
let makeham_model_data = MortData::from_Makeham_law()
.A(0.00022)
.B(2.7e-6)
.C(1.124)
.start_age(20)
.call()?;
Life table can also be formulated from dataframe
// DataFrames - mortality rates or survivor functions
// qx data
let df_qx = df! {
"age" => [25_u32, 26, 27],
"qx" => [0.001_f64, 0.0012, 0.0015],
}?;
let data_from_df_with_qx = MortData::from_df(df_qx)?;
// lx data
let df_lx = df! {
"age" => [25_u32, 26.0, 27.0],
"lx" => [100000.0_f64, 99900.0, 99780.0],
}?;
let data_from_df_with_lx = MortData::from_df(df_lx)?;
// Macro to directly form MortData
// This is equivalent to forming dataframe then using from_df method
let data_from_macro = mddf! {
"age" => [25_u32, 26, 27],
"qx" => [0.001_f64, 0.0012, 0.0015],
}
There are various other methods to formulate life table. For examples, from spreadsheets
// Custom data from spreadsheet XLSX
let data_from_xlsx = MortData::from_xlsx("data/mortality.xlsx", "select")?;
// Custom data from spreadsheet ODS
let data_from_ods = MortData::from_ods("data/mortality.ods", "select")?;
Direct ingestion from SOA, IFOA and Australian Government Actuary mortality and morbidity database
More direct API are coming in the next releases. Please feel free to suggest your favorite database.
// ELT No.15 Female
let data_from_soa = MortData::from_soa_url_id(1704)?;
// AM92 Selected Mortality Table
let data_from_ifoa = MortData::from_ifoa_url_id("AM92")?;
// Male mortality rate in 2020-2022
let data_from_aga = MortData::from_aus_gov_act("Male", "2020-22")?;
RSLife builder pattern lets you IMMERSE yourselves in what truly matter for the core actuarial computation.
- π― Intentional: Only specify parameters that matter for each calculation
- ποΈ Manageable: Avoid clutter from declaring all parameters
- π§ Maintainable: Adding new parameters doesn't break existing code
- β‘ Efficient: Automatic cross-field validation catches errors early
- π Readable: Self-documenting code that's easy to understand
- π Safe: Compile-time validation prevents parameter mistakes
- π§ Effortless: Capable to construct complex calculations with minial code
vs. Traditional Approaches:
// β Other libraries: **verbose** structs, need to declare all parameters, easy to mess up order
let params = ComplexConfig {
mt: config,
i: 0.03,
x: 35,
n: None,
t: 10,
m: 1,
moment: 1,
entry_age: None,
};
// β What does this even mean? Not intuitive but a common practise
let result = some_function(&config, 35, 0.03, 1, 0, 1, 1, Some(30))?;
// β
RSLife: crystal clear, only specify what matters
let result = Ax()
.mt(&config)
.i(0.03)
.x(35)
.entry_age(34)
.call()?;
Systematic Modifiers:
- Immediate / In arrears: Single letter β
Ax
,Axn
(payments at end of year) - Due / In advance: Double letter β
aax
,aaxn
(payments at start of year) - Increasing:
I
prefix βIAx
,Iaax
(arithmetic growth) - Decreasing:
D
prefix βDAx1n
,Daaxn
(arithmetic decrease) - Geometric:
g
prefix βgAx
,gaax
(geometric growth)
These modifiers are applicable to most but not all functions. (eg: There is no modified version for Exn/Axn1 - pure endowment function)
All functions now use the builder pattern with SingleLifeParams
and SurvivalFunctionParams
for consistent parameter passing and automatic validation.
Cetain annuities:
Present value and future value
aan
,an
,ssn
,sn
Iaan
,Ian
,Issn
,Isn
,Daan
,Dan
,Dssn
,Dsn
,
Annuities:
Due/In-advance version:
aax
,aaxn
Iaax
,Iaaxn
Daaxn
gaax
,gaaxn
Immediate/In-arrears version:
ax
,axn
Iax
,Iaxn
Daxn
gax
,gaxn
Benefits and Life Insurance:
Ax
,Ax1n
,Exn
orAxn1
,Axn
IAx
,IAx1n
,IAxn
DAx1n
,DAxn
gAx
,gAx1n
,gExn
,gAxn
Survival Probabilities:
tpx
,tqx
Commutation:
Cx
,Dx
,Mx
,Nx
,Rx
,Sx
All functions are developed following Test-Driven Development principles, using the most trusted reference materials from SOA and IFOA.
The package is also routinely re-tested by solving the latest actuarial examination problems.
Check out the examples/
directory for comprehensive examples:
basic_usage.rs
- Demonstrates basic usage of the package.cm1_april_2025.rs
- Using RSLife package to provide solution for CM1 exam from IFOA.
These examples will be updated when CM1 papers and examiners' report are published.
SOA examination materials are also under consideration to be added as a re-testing medium in the near future.
# Basic usage example
cargo run --example basic_usage
# April 2025 CM1 exam solution using RSLife
cargo run --example cm1_april_2025
Contributions are welcome! Please feel free to submit a Pull Request.
For major changes, please open an issue first to discuss what you would like to change.
This project is licensed under the MIT License - see the LICENSE file for details.
Willian Nguyen - hieunt(dot)hello(at)gmail(dot)com
Project Link - https://github.com/hnlearndev/rslife
- Actuarial Mathematics for Life Contingent Risks
- Actuarial Mathematics
- Society of Actuaries Mortality and Morbidity Tables
- Institute and Faculty of Actuaries Mortality and Morbidity Tables
- Standard actuarial notation and practices
Python:
- pyliferisk - Python library for actuarial calculations and life insurance mathematics
- pymort - Python mortality table library with XML parsing capabilities
R:
- lifecontingencies - R package for actuarial life contingencies calculations
- MortalityTables - R package for working with life and pension tables
- demography - R package for demographic analysis and mortality forecasting
Julia:
- MortalityTables.jl - Julia package for mortality table calculations and life contingencies
- ActuaryUtilities.jl - Julia utilities for actuarial modeling and analysisk.
Let me know that you find the crate helpful. Thank you :D