Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 96 additions & 101 deletions ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -894,14 +894,13 @@ static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar,
}

/**
* @brief Get or expand a cached float32 tensor filled with a scalar value.
* @brief Get or expand a cached tensor filled with a scalar value.
*
* This function manages cached device memory for float32 tensors. If the current
* This function manages cached device memory for tensors. If the current
* cache size is insufficient for the requested tensor shape, the old memory will
* be released and new memory will be allocated. The allocated buffer is then
* initialized either with zeros (when @p value == 0.0f) or with the given scalar
* value using CANN operations. Finally, an aclTensor object is created from the
* cached memory and returned.
* be released and new memory will be allocated. The allocated buffer is
* initialized with the given scalar value using CANN operations.
* Finally, an aclTensor object is created from the cached memory and returned.
*
* @param ctx The CANN backend context that manages device memory.
* @param buffer A pointer to the cached device buffer (will be allocated
Expand All @@ -910,25 +909,27 @@ static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar,
* updated when the cache is expanded.
* @param ne The tensor shape array (number of elements in each dimension).
* @param nb The stride size for each dimension.
* @param dtype Data type of cached tensor.
* @param dims The number of tensor dimensions.
* @param value The scalar value used to fill the tensor (supports zero
* initialization via memset or arbitrary values via fill_scalar).
* @return An aclTensor pointer created from the cached buffer.
*/
static aclTensor* get_f32_cache_acl_tensor(
static aclTensor* get_cache_acl_tensor(
ggml_backend_cann_context& ctx,
void** buffer,
int64_t &cache_element,
int64_t* ne,
size_t* nb,
ggml_type dtype,
int64_t dims,
float value) {
// Calculate total number of elements
int64_t n_element = 1;
for (int i = 0; i < dims; i++) {
n_element *= ne[i];
}
size_t size = n_element * sizeof(float);
size_t size = n_element * ggml_type_size(dtype);

// Allocate or expand cache if needed
if (cache_element < n_element) {
Expand All @@ -941,19 +942,17 @@ static aclTensor* get_f32_cache_acl_tensor(
cache_element = n_element;

// Initialize cache
if (value == 0.0f) {
ACL_CHECK(aclrtMemsetAsync(*buffer, size, 0, size, ctx.stream()));
} else {
int64_t pool_ne[1] = { n_element };
size_t pool_nb[1] = { sizeof(float) };
aclTensor* acl_value = ggml_cann_create_tensor(
*buffer, ACL_FLOAT, sizeof(float), pool_ne, pool_nb, 1);
aclnn_fill_scalar(ctx, 1, acl_value);
ggml_cann_release_resources(ctx, acl_value);
}
int64_t pool_ne[1] = { n_element };
size_t pool_nb[1] = { ggml_type_size(dtype) };
aclTensor* acl_value = ggml_cann_create_tensor(
*buffer, ggml_cann_type_mapping(dtype), ggml_type_size(dtype),
pool_ne, pool_nb, 1);
aclnn_fill_scalar(ctx, value, acl_value);
ggml_cann_release_resources(ctx, acl_value);
}

return ggml_cann_create_tensor(*buffer, ACL_FLOAT, sizeof(float), ne, nb, dims);
return ggml_cann_create_tensor(*buffer, ggml_cann_type_mapping(dtype),
ggml_type_size(dtype), ne, nb, dims);
}

void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
Expand All @@ -965,35 +964,39 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));

// build gamma, one...
// build gamma.
size_t acl_gamma_nb[GGML_MAX_DIMS];
acl_gamma_nb[0] = sizeof(float);
// gamma's type is the same with dst.
acl_gamma_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
acl_gamma_nb[i] = acl_gamma_nb[i - 1] * src->ne[i - 1];
}
aclTensor* acl_gamma = get_f32_cache_acl_tensor(
aclTensor* acl_gamma = get_cache_acl_tensor(
ctx,
&ctx.rms_norm_one_tensor_cache.cache,
ctx.rms_norm_one_tensor_cache.size,
src->ne,
acl_gamma_nb,
dst->type,
1, // dims
1.0f // value
);

// build rstd, zero...
// build rstd.
int64_t acl_rstd_ne[] = {src->ne[1], src->ne[2], src->ne[3]};
size_t acl_rstd_nb[GGML_MAX_DIMS - 1];
// rstd will always be F32.
acl_rstd_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
acl_rstd_nb[i] = acl_rstd_nb[i - 1] * acl_rstd_ne[i - 1];
}
aclTensor* acl_rstd = get_f32_cache_acl_tensor(
aclTensor* acl_rstd = get_cache_acl_tensor(
ctx,
&ctx.rms_norm_zero_tensor_cache.cache,
ctx.rms_norm_zero_tensor_cache.size,
acl_rstd_ne,
acl_rstd_nb,
GGML_TYPE_F32,
GGML_MAX_DIMS - 1,
0.0f // value
);
Expand Down Expand Up @@ -1765,41 +1768,42 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // src
ggml_tensor* src1 = dst->src[1]; // index

GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);

switch (src0->type) {
case GGML_TYPE_F32: {
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(float));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
case GGML_TYPE_F16:
case GGML_TYPE_F32:
if(src0->type == dst->type) {
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
} else {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * ggml_element_size(dst));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = dst->nb[0];
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
case GGML_TYPE_Q8_0: {
// add 1 dim for bcast mul.
size_t weight_nb[GGML_MAX_DIMS + 1], scale_nb[GGML_MAX_DIMS + 1],
dequant_nb[GGML_MAX_DIMS + 1];
int64_t weight_ne[GGML_MAX_DIMS + 1], scale_ne[GGML_MAX_DIMS + 1],
*dequant_ne;
int64_t scale_offset = 0;

// [3,4,5,64] -> [3,4,5,2,32]
weight_ne[0] = QK8_0;
weight_ne[1] = src0->ne[0] / QK8_0;
Expand All @@ -1809,7 +1813,6 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
weight_ne[i] = src0->ne[i - 1];
weight_nb[i] = weight_nb[i - 1] * weight_ne[i - 1];
}

// [3,4,5,64] -> [3,4,5,2,1]
scale_ne[0] = 1;
scale_ne[1] = src0->ne[0] / QK8_0;
Expand All @@ -1819,35 +1822,30 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
scale_ne[i] = src0->ne[i - 1];
scale_nb[i] = scale_nb[i - 1] * scale_ne[i - 1];
}

// [3,4,5,64] -> [3,4,5,2,32]
dequant_ne = weight_ne;
dequant_nb[0] = sizeof(float);
dequant_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS + 1; i++) {
dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1];
}

scale_offset = ggml_nelements(src0) * sizeof(int8_t);
ggml_cann_pool_alloc dequant_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(float));

ctx.pool(), ggml_nelements(src0) * ggml_type_size(dst->type));
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb,
GGML_MAX_DIMS + 1);
aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb,
GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset);
aclTensor* dequant_tensor = ggml_cann_create_tensor(
dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float),
dequant_buffer_allocator.get(), ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
dequant_ne, dequant_nb, GGML_MAX_DIMS + 1);

aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
dequant_nb[0] = sizeof(float);
dequant_nb[0] = ggml_type_size(dst->type);
dequant_ne = src0->ne;
for (int i = 1; i < GGML_MAX_DIMS; i++) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
}

aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb,
dst->data, dst->ne, dst->nb,
Expand Down Expand Up @@ -1965,16 +1963,8 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
// Only check env once.
static bool weight_to_nz = parse_bool(get_env("GGML_CANN_WEIGHT_NZ").value_or("on"));
if (weight_to_nz && is_matmul_weight(weight)) {
int64_t acl_stride[2] = {1, transpose_ne[1]};

// Reverse ne.
std::reverse(transpose_ne, transpose_ne + n_dims);

std::vector<int64_t> storageDims = {transpose_ne[0], transpose_ne[1]};

acl_weight_tensor = aclCreateTensor(
transpose_ne, n_dims, ggml_cann_type_mapping(weight->type), acl_stride,
0, ACL_FORMAT_FRACTAL_NZ, storageDims.data(), 2, weight->data);
acl_weight_tensor =
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims, ACL_FORMAT_FRACTAL_NZ);
} else {
acl_weight_tensor =
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims, ACL_FORMAT_ND);
Expand Down Expand Up @@ -3178,7 +3168,6 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
aclTensor* acl_src0_f16_tensor = nullptr;
aclTensor* acl_src1_f16_tensor = nullptr;
aclTensor* acl_src2_f16_tensor = nullptr;
aclTensor* acl_dst_f16_tensor = nullptr;

// Step 1: cast the src0 (Query) to fp16 if needed
ggml_cann_pool_alloc src0_f16_allocator(ctx.pool());
Expand Down Expand Up @@ -3216,22 +3205,6 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
acl_src2_f16_tensor = ggml_cann_create_tensor(src2, src2_bsnd_ne,
src2_bsnd_nb, GGML_MAX_DIMS);

ggml_cann_pool_alloc out_f16_allocator(ctx.pool());
void* out_f16_buffer = out_f16_allocator.alloc(
ggml_nelements(dst) * faElemSize);

int64_t* out_f16_ne = src0_bsnd_ne;
size_t out_f16_nb[GGML_MAX_DIMS];
out_f16_nb[0] = faElemSize;
for(int i = 1; i < GGML_MAX_DIMS; ++i){
out_f16_nb[i] = out_f16_nb[i - 1] * out_f16_ne[i - 1];
}

acl_dst_f16_tensor = ggml_cann_create_tensor(
out_f16_buffer, faDataType, faElemSize,
out_f16_ne, out_f16_nb, GGML_MAX_DIMS
);

// Step 3: create the PSEShift tensor if needed
// this tensor is considered as mask (f16) in the llama.cpp
aclTensor* bcast_pse_tensor = nullptr;
Expand Down Expand Up @@ -3334,8 +3307,29 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
int64_t keyAntiquantMode = 0;
int64_t valueAntiquantMode = 0;

// Step 5: launch the FusedInferAttentionScoreV2 kernel.
// Refer to https://gitee.com/ascend/cann-ops-adv/blob/master/docs/FusedInferAttentionScoreV2.md
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
aclTensor * fa_dst_tensor = nullptr;
aclTensor * acl_dst_tensor = nullptr;
ggml_cann_pool_alloc out_f16_allocator(ctx.pool());
if (dst->type == GGML_TYPE_F32) {
void* out_f16_buffer = out_f16_allocator.alloc(
ggml_nelements(dst) * faElemSize);

int64_t* out_f16_ne = src0_bsnd_ne;
size_t out_f16_nb[GGML_MAX_DIMS];
out_f16_nb[0] = faElemSize;
for(int i = 1; i < GGML_MAX_DIMS; ++i){
out_f16_nb[i] = out_f16_nb[i - 1] * out_f16_ne[i - 1];
}

fa_dst_tensor = ggml_cann_create_tensor(
out_f16_buffer, faDataType, faElemSize,
out_f16_ne, out_f16_nb, GGML_MAX_DIMS
);
}
else {
fa_dst_tensor = ggml_cann_create_tensor(dst);
}

GGML_CANN_CALL_ACLNN_OP(ctx, FusedInferAttentionScoreV2,
acl_q_tensor, acl_k_tensor_list, acl_v_tensor_list, // q, k, v
Expand All @@ -3357,23 +3351,24 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
blockSize, antiquantMode, // blockSize, antiquantMode
softmaxLseFlag, // softmaxLseFlag
keyAntiquantMode, valueAntiquantMode, // keyAntiqMode, valueAntiqMode
acl_dst_f16_tensor, // attentionOut
fa_dst_tensor, // attentionOut
nullptr // softmaxLse
);

// Step 6: post-processing, permute and cast to f32
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
// TODO: when dst is fp16, don't need cast
aclnn_cast(ctx, acl_dst_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
ggml_cann_release_resources(ctx, acl_src0_f16_tensor,
acl_src1_f16_tensor,
acl_src2_f16_tensor,
acl_dst_f16_tensor,
acl_dst_tensor);
if(src3 != nullptr){
ggml_cann_release_resources(ctx, bcast_pse_tensor);
if (dst->type == GGML_TYPE_F32) {
// Step 6: post-processing, permute and cast to f32
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
aclnn_cast(ctx, fa_dst_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
}
}else{

ggml_cann_release_resources(ctx, acl_src0_f16_tensor,
acl_src1_f16_tensor,
acl_src2_f16_tensor,
fa_dst_tensor,
acl_dst_tensor,
bcast_pse_tensor);

} else {
GGML_ABORT("Function is not implemented.");
}
}
Loading