Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 48 additions & 22 deletions scripts/server-bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import json
import os
import random
import sqlite3
import subprocess
from time import sleep, time
from typing import Optional, Union
Expand Down Expand Up @@ -47,6 +48,8 @@ def get_prompts_rng(prompt_lengths: list[int]) -> list[list[int]]:


def get_server(path_server: str, path_log: Optional[str]) -> dict:
if path_server.startswith("http://") or path_server.startswith("https://"):
return {"process": None, "address": path_server, "fout": None}
if os.environ.get("LLAMA_ARG_HOST") is None:
logger.info("LLAMA_ARG_HOST not explicitly set, using 127.0.0.1")
os.environ["LLAMA_ARG_HOST"] = "127.0.0.1"
Expand Down Expand Up @@ -89,15 +92,13 @@ def get_prompt_length(data: dict) -> int:
f"{server_address}/apply-template",
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
)
if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
response.raise_for_status()
prompt: str = json.loads(response.text)["prompt"]
response = session.post(
f"{server_address}/tokenize",
json={"content": prompt, "add_special": True}
)
if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
response.raise_for_status()
tokens: list[str] = json.loads(response.text)["tokens"]
return len(tokens)

Expand All @@ -107,7 +108,12 @@ def send_prompt(data: dict) -> tuple[float, list[float]]:
server_address: str = data["server_address"]

t_submit = time()
if data["synthetic_prompt"]:
if data["external_server"]:
json_data: dict = {
"prompt": data["prompt"], "ignore_eos": True,
"seed": data["seed"], "max_tokens": data["n_predict"], "stream": True}
response = session.post(f"{server_address}/v1/completions", json=json_data, stream=True)
elif data["synthetic_prompt"]:
json_data: dict = {
"prompt": data["prompt"], "ignore_eos": True, "cache_prompt": False,
"seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
Expand All @@ -117,34 +123,38 @@ def send_prompt(data: dict) -> tuple[float, list[float]]:
f"{server_address}/apply-template",
json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
)
if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
response.raise_for_status()
prompt: str = json.loads(response.text)["prompt"]

json_data: dict = {"prompt": prompt, "seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
response = session.post(f"{server_address}/completion", json=json_data, stream=True)
response.raise_for_status()

lines = []
token_arrival_times: list[float] = []
for line in response.iter_lines(decode_unicode=False):
if not line.startswith(b"data: "):
continue
lines.append(line)
token_arrival_times.append(time())
token_arrival_times = token_arrival_times[:-1]

if response.status_code != 200:
raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
if len(lines) > 1 and "timings" in json.loads(lines[-2][6:]):
token_arrival_times = token_arrival_times[:-1]

return (t_submit, token_arrival_times)


def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int, seed_offset: int):
def benchmark(
path_server: str, path_log: Optional[str], path_db: Optional[str], name: Optional[str], prompt_source: str, n_prompts: int,
n_predict: int, n_predict_min: int, seed_offset: int):
external_server: bool = path_server.startswith("http://") or path_server.startswith("https://")
if os.environ.get("LLAMA_ARG_N_PARALLEL") is None:
logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32")
os.environ["LLAMA_ARG_N_PARALLEL"] = "32"
if os.environ.get("LLAMA_ARG_N_GPU_LAYERS") is None:
if not external_server and os.environ.get("LLAMA_ARG_N_GPU_LAYERS") is None:
logger.info("LLAMA_ARG_N_GPU_LAYERS not explicitly set, using 999")
os.environ["LLAMA_ARG_N_GPU_LAYERS"] = "999"
if os.environ.get("LLAMA_ARG_FLASH_ATTN") is None:
if not external_server and os.environ.get("LLAMA_ARG_FLASH_ATTN") is None:
logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'")
os.environ["LLAMA_ARG_FLASH_ATTN"] = "true"

Expand All @@ -165,7 +175,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
else:
n_predict_min = n_predict

if os.environ.get("LLAMA_ARG_CTX_SIZE") is None:
if not external_server and os.environ.get("LLAMA_ARG_CTX_SIZE") is None:
context_per_slot: int = int(1.05 * (n_predict + (np.max(prompt_n) if synthetic_prompts else 2048)))
context_total: int = context_per_slot * parallel
os.environ["LLAMA_ARG_CTX_SIZE"] = str(context_total)
Expand All @@ -176,6 +186,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
try:
server = get_server(path_server, path_log)
server_address: str = server["address"]
assert external_server == (server["process"] is None)

adapter = requests.adapters.HTTPAdapter(pool_connections=parallel, pool_maxsize=parallel) # type: ignore
session = requests.Session()
Expand All @@ -188,8 +199,9 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
if seed_offset >= 0:
random.seed(3 * (seed_offset + 1000 * i) + 1)
data.append({
"session": session, "server_address": server_address, "prompt": p, "synthetic_prompt": synthetic_prompts,
"n_predict": random.randint(n_predict_min, n_predict), "seed": (3 * (seed_offset + 1000 * i) + 2) if seed_offset >= 0 else -1})
"session": session, "server_address": server_address, "external_server": external_server, "prompt": p,
"synthetic_prompt": synthetic_prompts, "n_predict": random.randint(n_predict_min, n_predict),
"seed": (3 * (seed_offset + 1000 * i) + 2) if seed_offset >= 0 else -1})

if not synthetic_prompts:
logger.info("Getting the prompt lengths...")
Expand All @@ -199,7 +211,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
t0 = time()
results: list[tuple[float, list[float]]] = thread_map(send_prompt, data, max_workers=parallel, chunksize=1)
finally:
if server is not None:
if server is not None and server["process"] is not None:
server["process"].terminate()
server["process"].wait()
if session is not None:
Expand Down Expand Up @@ -233,15 +245,24 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
logger.info(f"Average generation depth: {depth_sum / token_t.shape[0]:.2f} tokens")
logger.info(f"Average total generation speed: {token_t.shape[0] / token_t_last:.2f} tokens/s")
logger.info(f"Average generation speed per slot: {token_t.shape[0] / (parallel * token_t_last):.2f} tokens/s / slot")
logger.info("")
logger.info(
"The above numbers are the speeds as observed by the Python script and may differ from the performance reported by the server, "
"particularly when the server is fast vs. the network or Python script (e.g. when serving a very small model).")

if path_db is not None:
con = sqlite3.connect(path_db)
cursor = con.cursor()
cursor.execute(
"CREATE TABLE IF NOT EXISTS server_bench"
"(name TEXT, n_parallel INTEGER, prompt_source TEXT, n_prompts INTEGER, "
"n_predict INTEGER, n_predict_min INTEGER, seed_offset INTEGER, runtime REAL);")
cursor.execute(
"INSERT INTO server_bench VALUES (?, ?, ?, ?, ?, ?, ?, ?);",
[name, parallel, prompt_source, n_prompts, n_predict, n_predict_min, seed_offset, token_t_last])
con.commit()

plt.figure()
plt.scatter(prompt_n, 1e3 * prompt_t, s=10.0, marker=".", alpha=0.25)
plt.xlim(0, 1.05e0 * np.max(prompt_n))
plt.ylim(0, 1.05e3 * np.max(prompt_t))
plt.title(name or "")
plt.xlabel("Prompt length [tokens]")
plt.ylabel("Time to first token [ms]")
plt.savefig("prompt_time.png", dpi=240)
Expand All @@ -250,6 +271,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
plt.figure()
plt.hist(token_t, np.arange(0, bin_max))
plt.xlim(0, bin_max + 1)
plt.title(name or "")
plt.xlabel("Time [s]")
plt.ylabel("Num. tokens generated per second")
plt.savefig("gen_rate.png", dpi=240)
Expand All @@ -259,9 +281,13 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
parser = argparse.ArgumentParser(
description="Tool for benchmarking the throughput of the llama.cpp HTTP server. "
"Results are printed to console and visualized as plots (saved to current working directory). "
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help).")
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help). "
"The reported numbers are the speeds as observed by the Python script and may differ from the performance reported by the server, "
"particularly when the server is fast vs. the network or Python script (e.g. when serving a very small model).")
parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
parser.add_argument("--path_log", type=str, default="server-bench-{port}.log", help="Path to the model to use for the benchmark")
parser.add_argument("--path_db", type=str, default=None, help="Path to an sqlite database to store the benchmark results in")
parser.add_argument("--name", type=str, default=None, help="Name to label plots and database entries with")
parser.add_argument(
"--prompt_source", type=str, default="rng-1024-2048",
help="How to get the prompts for the benchmark, either 'mmlu' for MMLU questions or "
Expand Down