-
Notifications
You must be signed in to change notification settings - Fork 13.7k
Closed
Labels
Description
Version: 8030da7
Running on Mac M2 Ultra Studio with 192gig ram and MacOS. Model dolphin-2.7-mixtral-8x7b.Q5_K_M.gguf . This works up to the last week or so to version c2101a2, I haven't tracked down which commit breaks after that one running it on my system like this. It works when I use versions around the first week of March / End of Feb.
#!/bin/bash
server \
-m /Volumes/BrahmaSSD/LLM/models/GGUF/dolphin-2.7-mixtral-8x7b.Q5_K_M.gguf \
-c 0 \
-np 2 \
--port 8080 \
-ngl 60 \
-t 24 \
--host 0.0.0.0 $@
{"build":2408,"commit":"8030da7a","function":"main","level":"INFO","line":2732,"msg":"build info","tid":"0x1dccadc40","timestamp":1710254740}
{"function":"main","level":"INFO","line":2739,"msg":"system info","n_threads":24,"n_threads_batch":-1,"system_info":"AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 | ","tid":"0x1dccadc40","timestamp":1710254740,"total_threads":24}
llama_model_loader: loaded meta data with 24 key-value pairs and 995 tensors from /Volumes/BrahmaSSD/LLM/models/GGUF/dolphin-2.7-mixtral-8x7b.Q5_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = cognitivecomputations_dolphin-2.7-mix...
llama_model_loader: - kv 2: llama.context_length u32 = 32768
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 9: llama.expert_count u32 = 8
llama_model_loader: - kv 10: llama.expert_used_count u32 = 2
llama_model_loader: - kv 11: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: llama.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: general.file_type u32 = 17
llama_model_loader: - kv 14: tokenizer.ggml.model str = llama
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,32002] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 16: tokenizer.ggml.scores arr[f32,32002] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,32002] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 32000
llama_model_loader: - kv 20: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 21: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 22: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 23: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type f16: 32 tensors
llama_model_loader: - type q8_0: 64 tensors
llama_model_loader: - type q5_K: 833 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_vocab: special tokens definition check successful ( 261/32002 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32002
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 8
llm_load_print_meta: n_expert_used = 2
llm_load_print_meta: causal attm = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = Q5_K - Medium
llm_load_print_meta: model params = 46.70 B
llm_load_print_meta: model size = 30.02 GiB (5.52 BPW)
llm_load_print_meta: general.name = cognitivecomputations_dolphin-2.7-mixtral-8x7b
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 32000 '<|im_end|>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.76 MiB
ggml_backend_metal_buffer_from_ptr: allocated buffer, size = 30649.58 MiB, (30649.64 / 147456.00)
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: CPU buffer size = 85.94 MiB
llm_load_tensors: Metal buffer size = 30649.58 MiB
....................................................................................................
llama_new_context_with_model: n_ctx = 32768
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M2 Ultra
ggml_metal_init: picking default device: Apple M2 Ultra
ggml_metal_init: default.metallib not found, loading from source
ggml_metal_init: GGML_METAL_PATH_RESOURCES = nil
ggml_metal_init: loading '/usr/local/bin/ggml-metal.metal'
ggml_metal_init: error: Error Domain=MTLLibraryErrorDomain Code=3 "program_source:3:10: fatal error: 'ggml-common.h' file not found
#include "ggml-common.h"
^~~~~~~~~~~~~~~
" UserInfo={NSLocalizedDescription=program_source:3:10: fatal error: 'ggml-common.h' file not found
#include "ggml-common.h"
^~~~~~~~~~~~~~~
}
llama_new_context_with_model: failed to initialize Metal backend
llama_init_from_gpt_params: error: failed to create context with model '/Volumes/BrahmaSSD/LLM/models/GGUF/dolphin-2.7-mixtral-8x7b.Q5_K_M.gguf'
{"function":"load_model","level":"ERR","line":678,"model":"/Volumes/BrahmaSSD/LLM/models/GGUF/dolphin-2.7-mixtral-8x7b.Q5_K_M.gguf","msg":"unable to load model","tid":"0x1dccadc40","timestamp":1710254740}
If the bug concerns the server, please try to reproduce it first using the server test scenario framework.