-
Notifications
You must be signed in to change notification settings - Fork 12.9k
Closed
Labels
Description
Prerequisites
Please answer the following questions for yourself before submitting an issue.
- I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- I carefully followed the README.md.
- I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- I reviewed the Discussions, and have a new bug or useful enhancement to share.
Environment and Context
- Physical (or virtual) hardware you are using, e.g. for Linux:
$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i5-10310U CPU @ 1.70GHz
CPU family: 6
Model: 142
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
Stepping: 12
CPU(s) scaling MHz: 14%
CPU max MHz: 4400.0000
CPU min MHz: 400.0000
BogoMIPS: 4399.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts r
ep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_tim
er aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2
erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp vnmi md_clear flush_l1d arch_capabilities
Virtualization features:
Virtualization: VT-x
Caches (sum of all):
L1d: 128 KiB (4 instances)
L1i: 128 KiB (4 instances)
L2: 1 MiB (4 instances)
L3: 6 MiB (1 instance)
NUMA:
NUMA node(s): 1
NUMA node0 CPU(s): 0-7
Vulnerabilities:
Gather data sampling: Mitigation; Microcode
Itlb multihit: KVM: Mitigation: VMX disabled
L1tf: Not affected
Mds: Not affected
Meltdown: Not affected
Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Retbleed: Mitigation; Enhanced IBRS
Spec rstack overflow: Not affected
Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Spectre v2: Mitigation; Enhanced / Automatic IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Srbds: Mitigation; Microcode
Tsx async abort: Mitigation; TSX disabled
$ nvidia-smi
Sat Dec 9 05:53:13 2023
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 545.29.06 Driver Version: 545.29.06 CUDA Version: 12.3 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 4060 Ti On | 00000000:30:00.0 Off | N/A |
| 0% 54C P8 14W / 165W | 1MiB / 16380MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| No running processes found |
+---------------------------------------------------------------------------------------+
- Operating System, e.g. for Linux:
$ uname -a
Linux mando 6.6.4-200.fc39.x86_64 #1 SMP PREEMPT_DYNAMIC Sun Dec 3 18:13:11 UTC 2023 x86_64 GNU/Linux
$ cat /etc/redhat-release
Fedora release 39 (Thirty Nine)
- SDK version, e.g. for Linux:
$ python3 --version
Python 3.12.0
$ make --version
GNU Make 4.4.1
Built for x86_64-redhat-linux-gnu
Copyright (C) 1988-2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$ g++ --version
g++ (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6)
Copyright (C) 2023 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
$ git log | head -1
commit fe680e3d1080a765e5d3150ffd7bab189742898d
Failure Information (for bugs)
finetune fails with "terminate called after throwing an instance of 'std::bad_alloc'"
Steps to Reproduce
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
$ make LLAMA_CUBLAS=1 LLAMA_CUDA_F16=1 LLAMA_CUDA_CCBIN=g++-12 -j6 -B
$ ./finetune --model-base ../text-generation-webui/models/mistral-7b-instruct-v0.1.Q8_0.gguf --checkpoint-in chk-lora-mistral-7b-instruct-v0_1_Q8_0-shakespeare-LATEST.gguf --checkpoint-out chk-lora-mistral-7b-instruct-v0_1_Q8_0-shakespeare-ITERATION.gguf --lora-out lora-mistral-7b-instruct-v0_1_Q8_0-shakespeare-ITERATION.bin --train-data "shakespeare.txt" --save-every 10 --threads 6 --adam-iter 30 --batch 2 --ctx 64 --use-checkpointing
Failure Logs
main: seed: 1702100937
main: model base = '../text-generation-webui/models/mistral-7b-instruct-v0.1.Q8_0.gguf'
ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4060 Ti, compute capability 8.9
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../text-generation-webui/models/mistral-7b-instruct-v0.1.Q8_0.gguf (version GGUF V2)
llama_model_loader: - tensor 0: token_embd.weight q8_0 [ 4096, 32000, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 19: blk.2.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 20: blk.2.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 21: blk.2.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 22: blk.2.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 24: blk.2.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 25: blk.2.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 28: blk.3.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 29: blk.3.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 30: blk.3.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 31: blk.3.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 33: blk.3.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 34: blk.3.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 37: blk.4.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 38: blk.4.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 39: blk.4.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 40: blk.4.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 42: blk.4.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 43: blk.4.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 46: blk.5.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 47: blk.5.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 48: blk.5.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 49: blk.5.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 51: blk.5.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 52: blk.5.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 55: blk.6.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 56: blk.6.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 57: blk.6.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 58: blk.6.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 60: blk.6.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 61: blk.6.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 64: blk.7.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 65: blk.7.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 66: blk.7.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 67: blk.7.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 69: blk.7.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 70: blk.7.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 73: blk.8.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 74: blk.8.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 75: blk.8.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 76: blk.8.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 78: blk.8.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 79: blk.8.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 82: blk.9.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 83: blk.9.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 84: blk.9.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 85: blk.9.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 87: blk.9.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 88: blk.9.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 91: blk.10.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 92: blk.10.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 93: blk.10.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 94: blk.10.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 96: blk.10.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 97: blk.10.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 100: blk.11.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 101: blk.11.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 102: blk.11.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 103: blk.11.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 105: blk.11.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 106: blk.11.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 109: blk.12.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 110: blk.12.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 111: blk.12.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 112: blk.12.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 114: blk.12.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 115: blk.12.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 118: blk.13.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 119: blk.13.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 120: blk.13.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 121: blk.13.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 123: blk.13.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 124: blk.13.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 127: blk.14.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 128: blk.14.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 129: blk.14.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 130: blk.14.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 132: blk.14.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 133: blk.14.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 136: blk.15.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 137: blk.15.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 138: blk.15.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 139: blk.15.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 141: blk.15.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 142: blk.15.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 145: blk.16.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 146: blk.16.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 147: blk.16.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 148: blk.16.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 150: blk.16.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 151: blk.16.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 154: blk.17.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 155: blk.17.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 156: blk.17.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 157: blk.17.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 159: blk.17.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 160: blk.17.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 163: blk.18.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 164: blk.18.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 165: blk.18.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 166: blk.18.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 168: blk.18.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 169: blk.18.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 172: blk.19.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 173: blk.19.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 174: blk.19.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 175: blk.19.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 177: blk.19.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 178: blk.19.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 181: blk.20.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 182: blk.20.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 183: blk.20.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 184: blk.20.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 186: blk.20.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 187: blk.20.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 190: blk.21.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 191: blk.21.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 192: blk.21.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 193: blk.21.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 195: blk.21.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 196: blk.21.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 199: blk.22.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 200: blk.22.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 201: blk.22.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 202: blk.22.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 204: blk.22.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 205: blk.22.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 208: blk.23.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 209: blk.23.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 210: blk.23.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 211: blk.23.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 213: blk.23.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 214: blk.23.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 217: blk.24.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 218: blk.24.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 226: blk.25.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 227: blk.25.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 235: blk.26.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 236: blk.26.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 244: blk.27.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 245: blk.27.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 253: blk.28.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 254: blk.28.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 262: blk.29.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 263: blk.29.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 271: blk.30.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 272: blk.30.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 280: blk.31.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 281: blk.31.attn_k.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.attn_v.weight q8_0 [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.ffn_up.weight q8_0 [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.ffn_down.weight q8_0 [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 290: output.weight q8_0 [ 4096, 32000, 1, 1 ]
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = mistralai_mistral-7b-instruct-v0.1
llama_model_loader: - kv 2: llama.context_length u32 = 32768
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 11: general.file_type u32 = 7
llama_model_loader: - kv 12: tokenizer.ggml.model str = llama
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 19: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q8_0: 226 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V2
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly Q8_0
llm_load_print_meta: model params = 7.24 B
llm_load_print_meta: model size = 7.17 GiB (8.50 BPW)
llm_load_print_meta: general.name = mistralai_mistral-7b-instruct-v0.1
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.11 MiB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required = 7338.75 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/33 layers to GPU
llm_load_tensors: VRAM used: 0.00 MiB
...................................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
llama_build_graph: non-view tensors processed: 676/676
llama_new_context_with_model: compute buffer total size = 76.07 MiB
llama_new_context_with_model: VRAM scratch buffer: 73.00 MiB
llama_new_context_with_model: total VRAM used: 73.00 MiB (model: 0.00 MiB, context: 73.00 MiB)
main: init model
print_params: n_vocab: 32000
print_params: n_ctx: 64
print_params: n_embd: 4096
print_params: n_ff: 14336
print_params: n_head: 32
print_params: n_head_kv: 8
print_params: n_layer: 32
print_params: norm_rms_eps : 0.000010
print_params: rope_freq_base : 10000.000000
print_params: rope_freq_scale : 1.000000
print_lora_params: n_rank_attention_norm : 1
print_lora_params: n_rank_wq : 4
print_lora_params: n_rank_wk : 4
print_lora_params: n_rank_wv : 4
print_lora_params: n_rank_wo : 4
print_lora_params: n_rank_ffn_norm : 1
print_lora_params: n_rank_w1 : 4
print_lora_params: n_rank_w2 : 4
print_lora_params: n_rank_w3 : 4
print_lora_params: n_rank_tok_embeddings : 4
print_lora_params: n_rank_norm : 1
print_lora_params: n_rank_output : 4
main: total train_iterations 0
main: seen train_samples 0
main: seen train_tokens 0
main: completed train_epochs 0
main: lora_size = 88777312 bytes (84.7 MB)
main: opt_size = 132491200 bytes (126.4 MB)
main: opt iter 0
main: input_size = 16384544 bytes (15.6 MB)
main: compute_size = 140630338435168 bytes (134115544.0 MB)
main: evaluation order = LEFT_TO_RIGHT
terminate called after throwing an instance of 'std::bad_alloc'
what(): std::bad_alloc
Aborted (core dumped)