-
Notifications
You must be signed in to change notification settings - Fork 13.2k
Open
Labels
Description
Name and Version
./llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: Orin, compute capability 8.7, VMM: yes
version: 6060 (9c35706b)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu
Operating systems
Linux
GGML backends
CUDA
Hardware
Nvidia Jetson Orin Nano
Models
https://huggingface.co/lmstudio-community/gemma-3n-E4B-it-text-GGUF (Q4_K_M), but other quants seem to behave the same way.
Problem description & steps to reproduce
./llama-cli -m ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf -ngl 999
prints either nothing or garbled text.
./llama-cli -m ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf --device none
works as expected.
Prompts with GPU offloading print nothing most of the time, but GPU utilization is almost 100% and llama_perf_context_print
shows that it did generate tokens. Other models such as Gemma 3 4B work fine on my device.
First Bad Commit
No response
Relevant log output
$ ./llama-cli -m ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf -ngl 999
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: Orin, compute capability 8.7, VMM: yes
build: 6060 (9c35706b) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (Orin) - 6587 MiB free
llama_model_loader: loaded meta data with 39 key-value pairs and 847 tensors from ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = gemma3n
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Gg Hf Gm_Gemma 3n E4B It
llama_model_loader: - kv 3: general.finetune str = 3n-E4B-it
llama_model_loader: - kv 4: general.basename str = gg-hf-gm_gemma
llama_model_loader: - kv 5: general.size_label str = 6.9B
llama_model_loader: - kv 6: gemma3n.context_length u32 = 32768
llama_model_loader: - kv 7: gemma3n.embedding_length u32 = 2048
llama_model_loader: - kv 8: gemma3n.block_count u32 = 35
llama_model_loader: - kv 9: gemma3n.feed_forward_length u32 = 16384
llama_model_loader: - kv 10: gemma3n.attention.head_count u32 = 8
llama_model_loader: - kv 11: gemma3n.attention.layer_norm_rms_epsilon f32 = 0,000001
llama_model_loader: - kv 12: gemma3n.attention.key_length u32 = 256
llama_model_loader: - kv 13: gemma3n.attention.value_length u32 = 256
llama_model_loader: - kv 14: gemma3n.rope.freq_base f32 = 1000000,000000
llama_model_loader: - kv 15: gemma3n.attention.sliding_window u32 = 512
llama_model_loader: - kv 16: gemma3n.attention.head_count_kv u32 = 2
llama_model_loader: - kv 17: gemma3n.altup.active_idx u32 = 0
llama_model_loader: - kv 18: gemma3n.altup.num_inputs u32 = 4
llama_model_loader: - kv 19: gemma3n.embedding_length_per_layer_input u32 = 256
llama_model_loader: - kv 20: gemma3n.attention.shared_kv_layers f32 = 15,000000
llama_model_loader: - kv 21: gemma3n.activation_sparsity_scale arr[f32,35] = [1,644853, 1,644853, 1,644853, 1,6448...
llama_model_loader: - kv 22: gemma3n.attention.sliding_window_pattern arr[bool,35] = [true, true, true, true, false, true,...
llama_model_loader: - kv 23: tokenizer.chat_template str = {{ bos_token }}\n{%- if messages[0]['r...
llama_model_loader: - kv 24: tokenizer.ggml.model str = llama
llama_model_loader: - kv 25: tokenizer.ggml.pre str = default
llama_model_loader: - kv 26: tokenizer.ggml.tokens arr[str,262144] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
llama_model_loader: - kv 27: tokenizer.ggml.scores arr[f32,262144] = [-1000,000000, -1000,000000, -1000,00...
llama_model_loader: - kv 28: tokenizer.ggml.token_type arr[i32,262144] = [3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 29: tokenizer.ggml.bos_token_id u32 = 2
llama_model_loader: - kv 30: tokenizer.ggml.eos_token_id u32 = 1
llama_model_loader: - kv 31: tokenizer.ggml.unknown_token_id u32 = 3
llama_model_loader: - kv 32: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 33: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 34: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 35: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 36: tokenizer.ggml.add_space_prefix bool = false
llama_model_loader: - kv 37: general.quantization_version u32 = 2
llama_model_loader: - kv 38: general.file_type u32 = 15
llama_model_loader: - type f32: 422 tensors
llama_model_loader: - type f16: 108 tensors
llama_model_loader: - type q4_K: 282 tensors
llama_model_loader: - type q6_K: 35 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 3,94 GiB (4,93 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 6414
load: token to piece cache size = 1,9446 MB
print_info: arch = gemma3n
print_info: vocab_only = 0
print_info: n_ctx_train = 32768
print_info: n_embd = 2048
print_info: n_layer = 35
print_info: n_head = 8
print_info: n_head_kv = 2
print_info: n_rot = 256
print_info: n_swa = 512
print_info: is_swa_any = 1
print_info: n_embd_head_k = 256
print_info: n_embd_head_v = 256
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0,0e+00
print_info: f_norm_rms_eps = 1,0e-06
print_info: f_clamp_kqv = 0,0e+00
print_info: f_max_alibi_bias = 0,0e+00
print_info: f_logit_scale = 0,0e+00
print_info: f_attn_scale = 1,0e+00
print_info: n_ff = 16384
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000,0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 32768
print_info: rope_finetuned = unknown
print_info: model type = E4B
print_info: model params = 6,87 B
print_info: general.name = Gg Hf Gm_Gemma 3n E4B It
print_info: vocab type = SPM
print_info: n_vocab = 262144
print_info: n_merges = 0
print_info: BOS token = 2 '<bos>'
print_info: EOS token = 1 '<eos>'
print_info: EOT token = 106 '<end_of_turn>'
print_info: UNK token = 3 '<unk>'
print_info: PAD token = 0 '<pad>'
print_info: LF token = 248 '<0x0A>'
print_info: EOG token = 1 '<eos>'
print_info: EOG token = 106 '<end_of_turn>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 35 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 36/36 layers to GPU
load_tensors: CUDA0 model buffer size = 2774,53 MiB
load_tensors: CPU_Mapped model buffer size = 1680,00 MiB
........................................................
llama_context: constructing llama_context
llama_context: non-unified KV cache requires ggml_set_rows() - forcing unified KV cache
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: kv_unified = true
llama_context: freq_base = 1000000,0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 1,00 MiB
llama_kv_cache_unified_iswa: creating non-SWA KV cache, size = 4096 cells
llama_kv_cache_unified: CUDA0 KV buffer size = 32,00 MiB
llama_kv_cache_unified: size = 32,00 MiB ( 4096 cells, 4 layers, 1/ 1 seqs), K (f16): 16,00 MiB, V (f16): 16,00 MiB
llama_kv_cache_unified: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility
llama_kv_cache_unified_iswa: creating SWA KV cache, size = 1024 cells
llama_kv_cache_unified: CUDA0 KV buffer size = 32,00 MiB
llama_kv_cache_unified: size = 32,00 MiB ( 1024 cells, 16 layers, 1/ 1 seqs), K (f16): 16,00 MiB, V (f16): 16,00 MiB
llama_kv_cache_unified: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility
llama_context: CUDA0 compute buffer size = 516,00 MiB
llama_context: CUDA_Host compute buffer size = 31,51 MiB
llama_context: graph nodes = 3321
llama_context: graph splits = 4
common_init_from_params: KV cache shifting is not supported for this context, disabling KV cache shifting
common_init_from_params: added <eos> logit bias = -inf
common_init_from_params: added <end_of_turn> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 6
main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example:
<start_of_turn>user
You are a helpful assistant
Hello<end_of_turn>
<start_of_turn>model
Hi there<end_of_turn>
<start_of_turn>user
How are you?<end_of_turn>
<start_of_turn>model
system_info: n_threads = 6 (n_threads_batch = 6) / 6 | CUDA : ARCHS = 870 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | DOTPROD = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: interactive mode on.
sampler seed: 1176922997
sampler params:
repeat_last_n = 64, repeat_penalty = 1,000, frequency_penalty = 0,000, presence_penalty = 0,000
dry_multiplier = 0,000, dry_base = 1,750, dry_allowed_length = 2, dry_penalty_last_n = 4096
top_k = 40, top_p = 0,950, min_p = 0,050, xtc_probability = 0,000, xtc_threshold = 0,100, typical_p = 1,000, top_n_sigma = -1,000, temp = 0,800
mirostat = 0, mirostat_lr = 0,100, mirostat_ent = 5,000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to the AI.
- To return control without starting a new line, end your input with '/'.
- If you want to submit another line, end your input with '\'.
- Not using system message. To change it, set a different value via -sys PROMPT
> Hi
((no output...))
>
llama_perf_sampler_print: sampling time = 194,54 ms / 666 runs ( 0,29 ms per token, 3423,51 tokens per second)
llama_perf_context_print: load time = 4385,58 ms
llama_perf_context_print: prompt eval time = 626,00 ms / 10 tokens ( 62,60 ms per token, 15,97 tokens per second)
llama_perf_context_print: eval time = 65102,01 ms / 656 runs ( 99,24 ms per token, 10,08 tokens per second)
llama_perf_context_print: total time = 71614,44 ms / 666 tokens
llama_perf_context_print: graphs reused = 0
Interrupted by user