Skip to content

Eval bug: Broken/no Gemma 3n output on CUDA (Nvidia Jetson Orin Nano) #15034

@ai-fonsi

Description

@ai-fonsi

Name and Version

./llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: Orin, compute capability 8.7, VMM: yes
version: 6060 (9c35706b)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu

Operating systems

Linux

GGML backends

CUDA

Hardware

Nvidia Jetson Orin Nano

Models

https://huggingface.co/lmstudio-community/gemma-3n-E4B-it-text-GGUF (Q4_K_M), but other quants seem to behave the same way.

Problem description & steps to reproduce

./llama-cli -m ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf -ngl 999 prints either nothing or garbled text.
./llama-cli -m ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf --device none works as expected.

Prompts with GPU offloading print nothing most of the time, but GPU utilization is almost 100% and llama_perf_context_print shows that it did generate tokens. Other models such as Gemma 3 4B work fine on my device.

First Bad Commit

No response

Relevant log output

$ ./llama-cli -m ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf -ngl 999
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: Orin, compute capability 8.7, VMM: yes
build: 6060 (9c35706b) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (Orin) - 6587 MiB free
llama_model_loader: loaded meta data with 39 key-value pairs and 847 tensors from ../../../../models/gemma-3n-E4B-it-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = gemma3n
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Gg Hf Gm_Gemma 3n E4B It
llama_model_loader: - kv   3:                           general.finetune str              = 3n-E4B-it
llama_model_loader: - kv   4:                           general.basename str              = gg-hf-gm_gemma
llama_model_loader: - kv   5:                         general.size_label str              = 6.9B
llama_model_loader: - kv   6:                     gemma3n.context_length u32              = 32768
llama_model_loader: - kv   7:                   gemma3n.embedding_length u32              = 2048
llama_model_loader: - kv   8:                        gemma3n.block_count u32              = 35
llama_model_loader: - kv   9:                gemma3n.feed_forward_length u32              = 16384
llama_model_loader: - kv  10:               gemma3n.attention.head_count u32              = 8
llama_model_loader: - kv  11:   gemma3n.attention.layer_norm_rms_epsilon f32              = 0,000001
llama_model_loader: - kv  12:               gemma3n.attention.key_length u32              = 256
llama_model_loader: - kv  13:             gemma3n.attention.value_length u32              = 256
llama_model_loader: - kv  14:                     gemma3n.rope.freq_base f32              = 1000000,000000
llama_model_loader: - kv  15:           gemma3n.attention.sliding_window u32              = 512
llama_model_loader: - kv  16:            gemma3n.attention.head_count_kv u32              = 2
llama_model_loader: - kv  17:                   gemma3n.altup.active_idx u32              = 0
llama_model_loader: - kv  18:                   gemma3n.altup.num_inputs u32              = 4
llama_model_loader: - kv  19:   gemma3n.embedding_length_per_layer_input u32              = 256
llama_model_loader: - kv  20:         gemma3n.attention.shared_kv_layers f32              = 15,000000
llama_model_loader: - kv  21:          gemma3n.activation_sparsity_scale arr[f32,35]      = [1,644853, 1,644853, 1,644853, 1,6448...
llama_model_loader: - kv  22:   gemma3n.attention.sliding_window_pattern arr[bool,35]     = [true, true, true, true, false, true,...
llama_model_loader: - kv  23:                    tokenizer.chat_template str              = {{ bos_token }}\n{%- if messages[0]['r...
llama_model_loader: - kv  24:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  25:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  26:                      tokenizer.ggml.tokens arr[str,262144]  = ["<pad>", "<eos>", "<bos>", "<unk>", ...
llama_model_loader: - kv  27:                      tokenizer.ggml.scores arr[f32,262144]  = [-1000,000000, -1000,000000, -1000,00...
llama_model_loader: - kv  28:                  tokenizer.ggml.token_type arr[i32,262144]  = [3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  29:                tokenizer.ggml.bos_token_id u32              = 2
llama_model_loader: - kv  30:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  31:            tokenizer.ggml.unknown_token_id u32              = 3
llama_model_loader: - kv  32:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  33:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  34:               tokenizer.ggml.add_sep_token bool             = false
llama_model_loader: - kv  35:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  36:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  37:               general.quantization_version u32              = 2
llama_model_loader: - kv  38:                          general.file_type u32              = 15
llama_model_loader: - type  f32:  422 tensors
llama_model_loader: - type  f16:  108 tensors
llama_model_loader: - type q4_K:  282 tensors
llama_model_loader: - type q6_K:   35 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 3,94 GiB (4,93 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 6414
load: token to piece cache size = 1,9446 MB
print_info: arch             = gemma3n
print_info: vocab_only       = 0
print_info: n_ctx_train      = 32768
print_info: n_embd           = 2048
print_info: n_layer          = 35
print_info: n_head           = 8
print_info: n_head_kv        = 2
print_info: n_rot            = 256
print_info: n_swa            = 512
print_info: is_swa_any       = 1
print_info: n_embd_head_k    = 256
print_info: n_embd_head_v    = 256
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0,0e+00
print_info: f_norm_rms_eps   = 1,0e-06
print_info: f_clamp_kqv      = 0,0e+00
print_info: f_max_alibi_bias = 0,0e+00
print_info: f_logit_scale    = 0,0e+00
print_info: f_attn_scale     = 1,0e+00
print_info: n_ff             = 16384
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000,0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 32768
print_info: rope_finetuned   = unknown
print_info: model type       = E4B
print_info: model params     = 6,87 B
print_info: general.name     = Gg Hf Gm_Gemma 3n E4B It
print_info: vocab type       = SPM
print_info: n_vocab          = 262144
print_info: n_merges         = 0
print_info: BOS token        = 2 '<bos>'
print_info: EOS token        = 1 '<eos>'
print_info: EOT token        = 106 '<end_of_turn>'
print_info: UNK token        = 3 '<unk>'
print_info: PAD token        = 0 '<pad>'
print_info: LF token         = 248 '<0x0A>'
print_info: EOG token        = 1 '<eos>'
print_info: EOG token        = 106 '<end_of_turn>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 35 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 36/36 layers to GPU
load_tensors:        CUDA0 model buffer size =  2774,53 MiB
load_tensors:   CPU_Mapped model buffer size =  1680,00 MiB
........................................................
llama_context: constructing llama_context
llama_context: non-unified KV cache requires ggml_set_rows() - forcing unified KV cache
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: kv_unified    = true
llama_context: freq_base     = 1000000,0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_context:  CUDA_Host  output buffer size =     1,00 MiB
llama_kv_cache_unified_iswa: creating non-SWA KV cache, size = 4096 cells
llama_kv_cache_unified:      CUDA0 KV buffer size =    32,00 MiB
llama_kv_cache_unified: size =   32,00 MiB (  4096 cells,   4 layers,  1/ 1 seqs), K (f16):   16,00 MiB, V (f16):   16,00 MiB
llama_kv_cache_unified: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility
llama_kv_cache_unified_iswa: creating     SWA KV cache, size = 1024 cells
llama_kv_cache_unified:      CUDA0 KV buffer size =    32,00 MiB
llama_kv_cache_unified: size =   32,00 MiB (  1024 cells,  16 layers,  1/ 1 seqs), K (f16):   16,00 MiB, V (f16):   16,00 MiB
llama_kv_cache_unified: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility
llama_context:      CUDA0 compute buffer size =   516,00 MiB
llama_context:  CUDA_Host compute buffer size =    31,51 MiB
llama_context: graph nodes  = 3321
llama_context: graph splits = 4
common_init_from_params: KV cache shifting is not supported for this context, disabling KV cache shifting
common_init_from_params: added <eos> logit bias = -inf
common_init_from_params: added <end_of_turn> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 6
main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example:
<start_of_turn>user
You are a helpful assistant

Hello<end_of_turn>
<start_of_turn>model
Hi there<end_of_turn>
<start_of_turn>user
How are you?<end_of_turn>
<start_of_turn>model


system_info: n_threads = 6 (n_threads_batch = 6) / 6 | CUDA : ARCHS = 870 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | DOTPROD = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |

main: interactive mode on.
sampler seed: 1176922997
sampler params:
	repeat_last_n = 64, repeat_penalty = 1,000, frequency_penalty = 0,000, presence_penalty = 0,000
	dry_multiplier = 0,000, dry_base = 1,750, dry_allowed_length = 2, dry_penalty_last_n = 4096
	top_k = 40, top_p = 0,950, min_p = 0,050, xtc_probability = 0,000, xtc_threshold = 0,100, typical_p = 1,000, top_n_sigma = -1,000, temp = 0,800
	mirostat = 0, mirostat_lr = 0,100, mirostat_ent = 5,000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to the AI.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.
 - Not using system message. To change it, set a different value via -sys PROMPT


> Hi

((no output...))

>
llama_perf_sampler_print:    sampling time =     194,54 ms /   666 runs   (    0,29 ms per token,  3423,51 tokens per second)
llama_perf_context_print:        load time =    4385,58 ms
llama_perf_context_print: prompt eval time =     626,00 ms /    10 tokens (   62,60 ms per token,    15,97 tokens per second)
llama_perf_context_print:        eval time =   65102,01 ms /   656 runs   (   99,24 ms per token,    10,08 tokens per second)
llama_perf_context_print:       total time =   71614,44 ms /   666 tokens
llama_perf_context_print:    graphs reused =          0
Interrupted by user

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions