Skip to content

Conversation

@ericm-db
Copy link
Owner

What changes were proposed in this pull request?

Why are the changes needed?

Does this PR introduce any user-facing change?

How was this patch tested?

Was this patch authored or co-authored using generative AI tooling?

@ericm-db ericm-db force-pushed the tws-state-schema-changes branch from d6cd20f to 37526de Compare June 3, 2024 21:41
@ericm-db ericm-db force-pushed the tws-state-schema-changes branch from ccee64e to 67acea8 Compare June 4, 2024 04:22
@ericm-db ericm-db closed this Jul 3, 2024
ericm-db pushed a commit that referenced this pull request Feb 5, 2025
This is a trivial change to replace the loop index from `int` to `long`. Surprisingly, microbenchmark shows more than double performance uplift.

Analysis
--------
The hot loop of `arrayEquals` method is simplifed as below. Loop index `i` is defined as `int`, it's compared with `length`, which is a `long`, to determine if the loop should end.
```
public static boolean arrayEquals(
    Object leftBase, long leftOffset, Object rightBase, long rightOffset, final long length) {
  ......
  int i = 0;
  while (i <= length - 8) {
    if (Platform.getLong(leftBase, leftOffset + i) !=
        Platform.getLong(rightBase, rightOffset + i)) {
          return false;
    }
    i += 8;
  }
  ......
}
```

Strictly speaking, there's a code bug here. If `length` is greater than 2^31 + 8, this loop will never end because `i` as a 32 bit integer is at most 2^31 - 1. But compiler must consider this behaviour as intentional and generate code strictly match the logic. It prevents compiler from generating optimal code.

Defining loop index `i` as `long` corrects this issue. Besides more accurate code logic, JIT is able to optimize this code much more aggressively. From microbenchmark, this trivial change improves performance significantly on both Arm and x86 platforms.

Benchmark
---------
Source code:
https://gist.github.com/cyb70289/258e261f388e22f47e4d961431786d1a

Result on Arm Neoverse N2:
```
Benchmark                             Mode  Cnt    Score   Error  Units
ArrayEqualsBenchmark.arrayEqualsInt   avgt   10  674.313 ± 0.213  ns/op
ArrayEqualsBenchmark.arrayEqualsLong  avgt   10  313.563 ± 2.338  ns/op
```

Result on Intel Cascake Lake:
```
Benchmark                             Mode  Cnt     Score   Error  Units
ArrayEqualsBenchmark.arrayEqualsInt   avgt   10  1130.695 ± 0.168  ns/op
ArrayEqualsBenchmark.arrayEqualsLong  avgt   10   461.979 ± 0.097  ns/op
```

Deep dive
---------
Dive deep to the machine code level, we can see why the big gap. Listed below are arm64 assembly generated by Openjdk-17 C2 compiler.

For `int i`, the machine code is similar to source code, no deep optimization. Safepoint polling is expensive in this short loop.
```
// jit c2 machine code snippet
  0x0000ffff81ba8904:   mov        w15, wzr              // int i = 0
  0x0000ffff81ba8908:   nop
  0x0000ffff81ba890c:   nop
loop:
  0x0000ffff81ba8910:   ldr        x10, [x13, w15, sxtw] // Platform.getLong(leftBase, leftOffset + i)
  0x0000ffff81ba8914:   ldr        x14, [x12, w15, sxtw] // Platform.getLong(rightBase, rightOffset + i)
  0x0000ffff81ba8918:   cmp        x10, x14
  0x0000ffff81ba891c:   b.ne       0x0000ffff81ba899c    // return false if not equal
  0x0000ffff81ba8920:   ldr        x14, [x28, apache#848]      // x14 -> safepoint
  0x0000ffff81ba8924:   add        w15, w15, #0x8        // i += 8
  0x0000ffff81ba8928:   ldr        wzr, [x14]            // safepoint polling
  0x0000ffff81ba892c:   sxtw       x10, w15              // extend i to long
  0x0000ffff81ba8930:   cmp        x10, x11
  0x0000ffff81ba8934:   b.le       0x0000ffff81ba8910    // if (i <= length - 8) goto loop
```

For `long i`, JIT is able to do much more aggressive optimization. E.g, below code snippet unrolls the loop by four.
```
// jit c2 machine code snippet
unrolled_loop:
  0x0000ffff91de6fe0:   sxtw       x10, w7
  0x0000ffff91de6fe4:   add        x23, x22, x10
  0x0000ffff91de6fe8:   add        x24, x21, x10
  0x0000ffff91de6fec:   ldr        x13, [x23]          // unroll-1
  0x0000ffff91de6ff0:   ldr        x14, [x24]
  0x0000ffff91de6ff4:   cmp        x13, x14
  0x0000ffff91de6ff8:   b.ne       0x0000ffff91de70a8
  0x0000ffff91de6ffc:   ldr        x13, [x23, #8]      // unroll-2
  0x0000ffff91de7000:   ldr        x14, [x24, #8]
  0x0000ffff91de7004:   cmp        x13, x14
  0x0000ffff91de7008:   b.ne       0x0000ffff91de70b4
  0x0000ffff91de700c:   ldr        x13, [x23, #16]     // unroll-3
  0x0000ffff91de7010:   ldr        x14, [x24, #16]
  0x0000ffff91de7014:   cmp        x13, x14
  0x0000ffff91de7018:   b.ne       0x0000ffff91de70a4
  0x0000ffff91de701c:   ldr        x13, [x23, #24]     // unroll-4
  0x0000ffff91de7020:   ldr        x14, [x24, #24]
  0x0000ffff91de7024:   cmp        x13, x14
  0x0000ffff91de7028:   b.ne       0x0000ffff91de70b0
  0x0000ffff91de702c:   add        w7, w7, #0x20
  0x0000ffff91de7030:   cmp        w7, w11
  0x0000ffff91de7034:   b.lt       0x0000ffff91de6fe0
```

### What changes were proposed in this pull request?

A trivial change to replace loop index `i` of method `arrayEquals` from `int` to `long`.

### Why are the changes needed?

To improve performance and fix a possible bug.

### Does this PR introduce _any_ user-facing change?

No.

### How was this patch tested?

Existing unit tests.

### Was this patch authored or co-authored using generative AI tooling?

No.

Closes apache#49568 from cyb70289/arrayEquals.

Authored-by: Yibo Cai <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
ericm-db pushed a commit that referenced this pull request Aug 26, 2025
…onicalized expressions

### What changes were proposed in this pull request?

Make PullOutNonDeterministic use canonicalized expressions to dedup group and  aggregate expressions. This affects pyspark udfs in particular. Example:

```
from pyspark.sql.functions import col, avg, udf

pythonUDF = udf(lambda x: x).asNondeterministic()

spark.range(10)\
.selectExpr("id", "id % 3 as value")\
.groupBy(pythonUDF(col("value")))\
.agg(avg("id"), pythonUDF(col("value")))\
.explain(extended=True)
```

Currently results in a plan like this:

```
Aggregate [_nondeterministic#15](#15), [_nondeterministic#15 AS dummyNondeterministicUDF(value)#12, avg(id#0L) AS avg(id)#13, dummyNondeterministicUDF(value#6L)#8 AS dummyNondeterministicUDF(value)#14](#15%20AS%20dummyNondeterministicUDF(value)#12,%20avg(id#0L)%20AS%20avg(id)#13,%20dummyNondeterministicUDF(value#6L)#8%20AS%20dummyNondeterministicUDF(value)#14)
+- Project [id#0L, value#6L, dummyNondeterministicUDF(value#6L)#7 AS _nondeterministic#15](#0L,%20value#6L,%20dummyNondeterministicUDF(value#6L)#7%20AS%20_nondeterministic#15)
   +- Project [id#0L, (id#0L % cast(3 as bigint)) AS value#6L](#0L,%20(id#0L%20%%20cast(3%20as%20bigint))%20AS%20value#6L)
      +- Range (0, 10, step=1, splits=Some(2))
```

and then it throws:

```
[[MISSING_AGGREGATION] The non-aggregating expression "value" is based on columns which are not participating in the GROUP BY clause. Add the columns or the expression to the GROUP BY, aggregate the expression, or use "any_value(value)" if you do not care which of the values within a group is returned. SQLSTATE: 42803
```

- how canonicalized fixes this:
  -  nondeterministic PythonUDF expressions always have distinct resultIds per udf
  - The fix is to canonicalize the expressions when matching. Canonicalized means that we're setting the resultIds to -1, allowing us to dedup the PythonUDF expressions.
- for deterministic UDFs, this rule does not apply and "Post Analysis" batch extracts and deduplicates the expressions, as expected

### Why are the changes needed?

- the output of the query with the fix applied still makes sense - the nondeterministic UDF is invoked only once, in the project.

### Does this PR introduce _any_ user-facing change?

Yes, it's additive, it enables queries to run that previously threw errors.

### How was this patch tested?

- added unit test

### Was this patch authored or co-authored using generative AI tooling?

No

Closes apache#52061 from benrobby/adhoc-fix-pull-out-nondeterministic.

Authored-by: Ben Hurdelhey <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants