-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Explaining class assignment objectives for data frame analytics jobs #357
Explaining class assignment objectives for data frame analytics jobs #357
Conversation
|
@szabosteve and @lcawl it would be great if one of you could take a look if the explanations make sense to you. 🙏 |
tveasey
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
All in all, examples and discussion looks spot on to me, I only raised a couple of typos. No further review needed from me.
Machine Learning/Class Assigment Objectives/classification-class-assignment-objective.ipynb
Outdated
Show resolved
Hide resolved
Machine Learning/Class Assigment Objectives/classification-class-assignment-objective.ipynb
Outdated
Show resolved
Hide resolved
Machine Learning/Class Assigment Objectives/classification-class-assignment-objective.ipynb
Outdated
Show resolved
Hide resolved
szabosteve
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks, @valeriy42 for this example and for the explanation. I left some minor comments, mostly nitpicking. Please take or leave them as you want.
| "---\n", | ||
| "#### TL;DR\n", | ||
| "\n", | ||
| "* The default objective `maximize_minimum_recall` should work well for most cases.\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
| "* The default objective `maximize_minimum_recall` should work well for most cases.\n", | |
| "* The default objective `maximize_minimum_recall` works well for most cases.\n", |
| "#### TL;DR\n", | ||
| "\n", | ||
| "* The default objective `maximize_minimum_recall` should work well for most cases.\n", | ||
| "* You should explicitly use the `maximize_minimum_recall` objective if you have an unbalanced dataset and you are interested in high recall on the rare class.\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
| "* You should explicitly use the `maximize_minimum_recall` objective if you have an unbalanced dataset and you are interested in high recall on the rare class.\n", | |
| "* Use the `maximize_minimum_recall` objective if you have an unbalanced dataset and you are interested in high recall on the rare class.\n", |
| "\n", | ||
| "* The default objective `maximize_minimum_recall` should work well for most cases.\n", | ||
| "* You should explicitly use the `maximize_minimum_recall` objective if you have an unbalanced dataset and you are interested in high recall on the rare class.\n", | ||
| "* You should use the `maximize_accuracy` objective if you have a balanced dataset and you are interested in high accuracy and precision.\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
| "* You should use the `maximize_accuracy` objective if you have a balanced dataset and you are interested in high accuracy and precision.\n", | |
| "* Use the `maximize_accuracy` objective if you have a balanced dataset and you are interested in high accuracy and precision.\n", |
| " 2. What is the percentage of people identified as \"infected\" among all infected people.\n", | ||
| "- **Accuracy** is the fraction of relevant instances among all instances. It gives us a single number: the percentage of correctly identified healthy and infected people among all tested people.\n", | ||
| "\n", | ||
| "There is a trade-off between maximizing precision and recall. For example, labeling all people as \"infected\" will get us 100% but recall for infected people, since we identified all infected people in the sample, but only a very small precision since we misclassified many healthy people as \"infected\" as well.\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
| "There is a trade-off between maximizing precision and recall. For example, labeling all people as \"infected\" will get us 100% but recall for infected people, since we identified all infected people in the sample, but only a very small precision since we misclassified many healthy people as \"infected\" as well.\n", | |
| "There is a trade-off between maximizing precision and recall. For example, labeling all people as \"infected\" will get us 100% recall for infected people, since we identified all infected people in the sample, but only a very small precision since we misclassified many healthy people as \"infected\" as well.\n", |
| "# Choosing the class assignment objective\n", | ||
| "\n", | ||
| "---\n", | ||
| "#### TL;DR\n", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This section is handy, I really like it!
Machine Learning/Class Assigment Objectives/classification-class-assignment-objective.ipynb
Outdated
Show resolved
Hide resolved
Machine Learning/Class Assigment Objectives/classification-class-assignment-objective.ipynb
Show resolved
Hide resolved
| "source": [ | ||
| "## Balanced classes\n", | ||
| "\n", | ||
| "We begin by looking at a balanced classification dataset where the number of data points for class 0 and class 1 are about the same. " |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit. We prefer to use data set in the docs, but dataset is also correct.
| "We begin by looking at a balanced classification dataset where the number of data points for class 0 and class 1 are about the same. " | |
| "We begin by looking at a balanced classification data set where the number of data points for class 0 and class 1 are about the same. " |
| "outputs": [ | ||
| { | ||
| "data": { | ||
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAAFNCAYAAABmLyQkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXhUV/rA8e8ZTyYTd4EoIQQJ7l5KlTp1d+9uZbvd3e5ut7+2W9vdbtvtdusKpW7UocXdQwhR4u6TjN7fH3eYZEiwEkiA83keHpg7V85MwnnvfY8JRVGQJEmSJEmSJEmSJEmSpH1p+roAkiRJkiRJkiRJkiRJUv8kE0eSJEmSJEmSJEmSJElSj2TiSJIkSZIkSZIkSZIkSeqRTBxJkiRJkiRJkiRJkiRJPZKJI0mSJEmSJEmSJEmSJKlHMnEkSZIkSZIkSZIkSZIk9UgmjqQDEkI8JIR4pbf3PYRzKUKI1N441z7n/YsQ4p1feew1QojlvV2mIyGEWCqEuOEQ950hhCg92mWSJOnEJ4RoFUIk93U5pO6OVvz0nPtyIcR3XV5PFkLs9vw+nCuEWCyEuPooXPclIcSfevu8kiR1OlHqdSHEDiHEjN7e90S077PNr4kfR/v5Yt/6XwhxqxCiyvP7Gna0fm9P9t+Nnuj6ugDSsSOEuAa4F0gBmoFPgN8ritK4v2MURXnsUM9/OPtK/Zvnd+UGRVGmnAjXkaSTiRCiCIgFYhVFqe2yfROQBSQpilJ0JNdQFCXgSI6Xjk+KorwLvNtl0yPA84qi/Mvz+tMjvUZPcUFRlFuO9LySdDyT9fqhUxQl82jsK/WNrvW/EEIPPAtMUBRli2fzEf/eCiHeAEoVRfljl+vK3419yB5HJwkhxL3A34H7gSBgAjAQ+F4IYdjPMTKxKEmSdHwqBC7d+0IIMQzw77vinBxOwrg5ENjR14WQpJOErNdPUidhbNmfKMCEjDt9QiaOTgJCiEDgr8CdiqJ8oyiKw9MqMR9IBK7w7PcXIcSHQoh3hBDNwDX7Du0SQlwlhCgWQtQJIf4khCgSQpzS5fh3PP9O9HR3vFoIsUcIUSuE+EOX84wTQqwSQjQKISqEEM/vL4HVw+fxXvNwr+thEkIsFEK0CCE2CiFGdDnXg0KIfM972UKI8w5Qjn8JIUqEEM1CiA1CiKn7lOkDIcRbnnPtEEKM6fJ+ghDiYyFEjee7fL7Le9cJIXYKIRqEEN8KIQZ2eW+OECJHCNHkOUYcoHx+Qog3POfJBsbu836Pn1UIkQG8BEz0dP9s9Gw/UwixyfN5S4QQf+lyLpPn96bO8zNdJ4SI8rwXJIR41fNzLhNCPCqE0O7vOpIk9Yq3gau6vL4aeKvrDgf5P32xEKLQEz8QQpwuhKgUQkR4Xnu7s3vqmReFOkypVQixQggRLYT4p6f+yRFCjOxybp+u8J7jH/X8e4YQolQI8YAQotpTb5wrhDhDCJErhKgXQjy0vw99oM/keX+KEGKlp54qEWrvlr315TNCjW9NQojlnm3duuCL7nFv37h5wPgmhMgUQnzv+SxVQh3mHS2EsAohwrrsN8oTI/Q9fE6t57i9dfgGIUTC4XwfB6m3rxFCFHjOXSiEuLzL9uWef+cDycAXnp+7UewzfFoIcaNQ49neODPKs/1w44/3d6TLefM83+HnQojYLu8pQohbhDqErlEI8YIQYr+xUpKOIydrvX64Zdm3jj7Q/fi++y7y1IstQohtQohBQojfe8pdIoQ4tadjuxy/7/PItZ7jGjz10lghxFZP3eS99+/hM/cUW3q8n+5yzGHVt4dLCBEqhHhdCFHu+Tyf7me//V5PCJEqhPhZqHG2Vgix0LNdCCH+4fmemz3f/VDPe294PusgYJfnVI1CiJ8873f9ve0xlnveWyTU3/cmIcQvQohMz/abgMuBBzy/X194tnf93TB6ft/KPX/+KYQwet7b+/t9r+j8/b7213zH/Z1MHJ0cJqFmZz/uulFRlFbga2BOl83nAB8Cwfh2R0cIMQR4EfU/Vwxqz6W4g1x7CpAOzAYeFupNIYAL+A0QDkz0vH/b4X2sX3VdUD/jIiAUeA/4VHTemOcDU1E/21+Bd4QQMfu5xjrU7sF7z7NICGHq8v48YAHqd/k58DyoN/zAl0AxauIuzrMfQohzgIeA84EIYBnwvue9cNSf4R9Rv7d8YPIBvoM/ow5LTAHmot5gdNXjZ1UUZSdwC7BKUZQARVGCPfu3od6wBANnArcKIc71vHe15zwJQJjn+HbPe28ATiAVGAmcijoMYX/XkSTpyK0GAoUQGZ465xJg3/nd9vt/WlGUhcBK4DmhJjNeRf1/W7Of682ns26yAauAjZ7XH6J2LT9U0agxKw54GPgfagPHaNQ6609CiKT9HLvfzyTUJPxi4N+o9WsWsNlz3NOe809CrdMfANyHWN594+Z+45sQwgL8AHyDOuwkFfhRUZRKYCnq97jXlcACRVEcPVzzt6g9D84AAoHrAGsP+x12vS2EMAPPAacrimLxfCeb9z2xoigpwB7gbE8dbuv6vhDiIuAvnusHosbEOs/bhxt/up53FvA46ncVgxpLF+yz21mojSXDPfvN7eG7kaTjzclarx9pWXq8H9+Ps1ETdCHAJuBb1OflONShuf89wLE9GQ+kARcD/wT+AJwCZALzhRDTD3DsvrHlDXq4n4ZfV98e5ucA9Xvx95Q9EvjHfvY70PX+BnyH+v3Go8ZjPJ9lGjDIc9z8LuUHQFGUXM+1AYIVRZnVw7UPFMsXo/4sIlF/d971nPdlz7+f9MSds3s47x9QR+tkASOAcai/j3tF0/lcfD3wghAipKcv53gmE0cnh3CgVlEUZw/vVXje32uVoiifKoriVhSlfZ99LwS+UBRluaIodtSKXznItf+qKEq7ZxzqFtT/bCiKskFRlNWKojg9vZ/+Cxyo8jxcPV7XY4OiKB96bsafRQ1kEzzlWqQoSrnn8y8EdqNWDt0oivKOoih1ns/wDGBETVbttVxRlK8VRXGhVrZ7yzAO9YHhfkVR2hRF6VAUZe/EdLcAjyuKstPz83oMyPI88JwB7OhS9n8ClQf4DuYD/6coSr2iKCWoDwJdy3/In9Wz/1JFUbZ59t+KmtDa+zNzoD54pCqK4vL8fJuF2np9BnCP57NWowaaSw5QbkmSesfe1uk5wE6grOubB/k/DXA7MAs1ofGFoihfHuBan3j+33egzp/XoSjKW576byHqTe6hcqDWXQ7Um/1w4F+KorQoirIDyMa3Tj/Uz3QZ8IOiKO97et7WKYqyWQihQU283K0oSpmnDlu5byLkAHzi5kHi21lApaIoz3jq/hZFUdZ43nuTzh7AWtTE0Nv7ueYNwB8VRdmlqLYoilK3706/pt72vOcGhgoh/BRFqfB874frBtQb8XWeMuYpilLsKddhxZ99XA68pijKRs/P6PeoPZQSu+zzhKIojYqi7AGWoN7sS9KJ4KSr13uhLPu7H+/JMkVRvvXcgy9CbWR4oku5E4UQwYf0iVV/89T136Em9d5XFKVaUZQy1MbhA5XbG1tQk0EHup8+WvUtAJ7Ez+nALYqiNHhi6M897XuQ6zlQhzjHKr7PPw7AAgwGhKI+B1UcZhkPGMsVRXnN8/tmQ02yjRBCBB3i6S8HHvH87GpQE2JXdnnf4XnfoSjK10Arvs+EJwSZODo51ALhoufxsTGe9/cqOcB5Yru+ryiKlX2ywT3omtiw4pnATKhdP7/0dBlsRk2QhPd0gl+px+t6dP0MbqAU9bMh1KF4m4XahbQRGLq/cgkh7vN0CW3y7Bu0z777lsHk+RkkAMVKz4m8gcC/uly/HnU4Whzdv3+Fw/h5obbKdi3/IX9Wz/7jhRBLhDp0ogk1ybV3/7dRW2UWeLpwPunpxTUQ0AMVXa7zX9RsvyRJR9fbqMmSa9hnOAMc9P80irpwwiLUuuGZg1yrqsu/23t4fTiTV9Z5bvD3HtvT+Xs830E+UwJqS+i+wlEbEHp671D41MMHiW/7KwPAZ8AQT6v7HKBJUZS1+9n3QOfpWpbDrrcVRWlDbR2/BbXu/koIMfhg1zqcMh5u/NlHLF3imaL2nq7Dtwf0ge4BJOl4dtLV671Qlv3djx/KdWp7KPfhfO4jKXfX2HKw++mjVd/ulQDUK4rScLAdD3K9B1Cfa9YKddjgdQCKovyE2hPsBaBaCPGy8AypPAz7jeVCHd79hFCH0DUDRV2OORQ+ccfz79gur+v2ea47IeOOTBydHFahdus8v+tGIUQAavb4xy6bD9SDqAK1W+He4/1QWyt/jf8AOUCaoiiBqMOzDnUOgjZ8JwOMPsxre+eB8GSn44FyT6+e/wF3AGGK2kV+e0/lEup8Rg+g9uoJ8ezbdIifoQQYsJ+gVQLcrChKcJc/foqirET9/ruWXXR93YOKfd4f0OXYg33Wnn4P3kPt4pugKEoQ6jwUAsCTYf+roihDULuHnoXaIlaC+rsX3uXzBCqdKxUcrMeaJEm/kqe1sRC1lfLjHnbZ7/9pACFEFmrr3fvs02PxCFk5sjr8QA70mUpQh+7uqxbo2M97PvHG0xMoYp999q3HDhTfSlDnBerG05L+AWqvoyvZf2+jA32Wff2aehtPi/sc1MalHNR4cbh6LOOvjD9dlaM+RO09nxn1XqRsv0dI0gniJK3X+6sjfR45mK514cHup39tfXuoSoDQg/W2Otj1FEWpVBTlRkVRYoGbgReFZ34iRVGeUxRlNDAEdcja/YdZxgPF8stQh/6dgtrQn7i3yJ6/DyvuoD5TlR9m+Y57MnF0ElAUpQm1S92/hRCnCSH0ni7dH6D2tjnQzWlXHwJnCyEmCXWiz79w+BXPXhagGWj1tGTeehjHbgYu8XyOMahD6A7HaCHE+Z7EzT2oFfFqwIxacdQACHVis6EHKL/Ts69OCPEwajfSQ7EWNanzhBDCLNQJSvfOVfQS8HvROWFbkFDHLQN8BWR2KftdHDhIfeA5V4gQIh64s8t7B/usVUC88J2w3ILa2tAhhBiHWgnjOX6mEGKY56GqGbXLptvTzfQ74BkhRKAQQiOESBGdY7p7uo4kSb3nemCWpxfJvg70f9qEOnfGQ8C1QJwQorfmodsMXOZpATyN3h2mvN/PhDqHwSlCiPlCCJ0QIkwIkeXpefoa8KwQItZTrolCnfgyF7V1+kxPL8o/og5LPlgZ9hffvgRihBD3CHWyTYsQYnyX999C7UkwjwPH5leAvwkh0oRquOgysfahfB/7q7eFEFFCiHM8CRkbapf7Q53vad8y3ieEGO0pY6rnoeLXxJ+u3geuFUJkeX5GjwFrlCNcilySjiMnW73eX23myJ5HDtkh3E//2vr2cK6/GDXRE+L5zNN62PWA1xNCXOR5JgFo8OzrFuqk4eM9cbYNNQF0WHHnILHcghrP6lCTfY/tc3gV+2nU8Xgf+KMQIkKoc84+TPf5xU54MnF0klAU5UnUQPE06g3iGtTs8WzlEOdx8IxBvhN1jG8F6s1kNep/xMN1H2owa0HNTC88jGP/hJpNbkBNiL13mNf+DLUbfgNqq+75npbXbNRuu6tQK5BhwIr9nONb1MlNc1G7K3Zw4GFjXp4ur2ejTm63BzV5d7HnvU+Av6MOHWhGzdKf7nmvFrgIeAK14ks7QPlA/W72tkx9R5eHkEP4rD+hLnVZKYTYO5TxNuARIUQLaoX5QZf9o1ETi82oY+5/7nK9qwAD6vj1Bs9+eyfJ6+k6kiT1EkVR8hVFWb+ftw/0f/pxoERRlP94YsQVwKNCiLReKNbdqHVgI+q8AZ/2wjn32u9nUtT5bs4A7kUdBryZzrku7gO2oS56UI9aD2s8DS+3od6Ul6He0PqsstaD/cY3RVFaUIehnY06fGI3MLPL+ytQb5Y37p2fYj+e9Xy271Dr3VcBvx72+zX1tgZ18u1yz3cxncNr3Nn7WRYB/4cao1tQf86hvzL+dD3vD6j3AR+h3oukIOfNk04iJ2G93l8d6fPI4drv/fQR1LeH40rUBoYc1Oe/e/bd4RCuNxZYI4RoRe0Zd7eiKAWoje//83yuYtTnnKd+RRl7jOWojTLFqHE8G7XDQFevog4VbxQ9rxb3KLAe2Oo5/0bPtpOKUKdJkaTDJ9Shbo2o3fEL+7g4kiRJknTcE+oSw+8pivJKX5dFkiRJkiQJZI8j6TAJIc4WQvh7urA/jZp1LerbUkmSJEnS8U8IMRYYxeH1wpUkSZIkSTqqZOJIOlznoHZfL0cdKnWJIrutSZIkSdIREUK8CfyAutxyS1+XR5IkSZIkaS85VE2SJEmSJEmSJEmSJEnqkexxJEmSJEmSJEmSJEmSJPVIJo4kSZIkSZIkSZIkSZKkHun6ugCHIzw8XElMTOzrYkiSJPU7GzZsqFUUJaKvy9HXZJyQJEnqmYwTKhknJEmSenagOHFcJY4SExNZv359XxdDkiSp3xFCFPd1GfoDGSckSZJ6JuOESsYJSZKknh0oTsihapIkSZIkSZIkSZIkSVKPZOJIkiRJkiRJkiRJkiRJ6pFMHEmSJEmSJEmSJEmSJEk9Oq7mOOqJw+GgtLSUjo6Ovi7KfplMJuLj49Hr9X1dFEmSpJPO8RAnpE4yZkqSdKzJOHF8kXFCko694z5xVFpaisViITExESFEXxenG0VRqKuro7S0lKSkpL4ujiRJ0kmnv8cJqZOMmZIk9QUZJ44fMk5IUt847oeqdXR0EBYW1m8reSEEYWFhsgVDkiSpj/T3OCF1kjFTkqS+IOPE8UPGCUnqG8d94gjo95V8fy+fJEnSiU7Ww8cP+bOSJKkvyLrn+CF/VpJ07J0QiaOeNDY28uKLLx7163z66adkZ2cf9etIknQCa6uDwl9g5xdQnQ2K0tclkiRJkvqTlirI+wlyvoLa/L4ujSRJktTfNJXC7u9g1zfQUNzrp5eJIw9FUXC73Yd9HZk4kiTpiLRWw1e/hTfPhoVXwH+nQ+Gyvi6VBLzxxhvccccd3bZv3ryZr7/++piU4Z///CdWq/WYXAugqKiIoUOHArB+/XruuuuuA+7/2GOP+byeNGnSUSubJJ20Gveo8eGd82DBZfC/GVC2sa9LJSHjhIwTktRP1OTCG2fBuxfB+xfDa3OhqndzFCds4ujBBx8kPz+frKwsfvOb3zB79mxGjRrFsGHD+OyzzwC14ktPT+eqq65i6NChlJSU8Le//Y309HSmTJnCpZdeytNPPw1Afn4+p512GqNHj2bq1Knk5OSwcuVKPv/8c+6//36ysrLIz5ctQJIkHaaKLZD9aedrlx2+vlfthST1S7/mgcDpdP6qa/XWA8Gvuf6YMWN47rnnDrjPvg8EK1euPOzrSJJ0EHtWQ+nazte2Zvj5KXDIOV76KxknOsk4IUnHQM6X0FDY+bqlAra836uXOGETR0888QQpKSls3ryZp556ik8++YSNGzeyZMkS7r33XhTPUJDdu3dz2223sWPHDqqrq/noo4/YsmULixcvZv369d7z3XTTTfz73/9mw4YNPP3009x2221MmjSJefPm8dRTT7F582ZSUlL66uNKktTXqrNhx6eQ96M6pOBQtdV031a3G+wtvVY0qbuioiIGDx7MNddcw6BBg7j88sv54YcfmDx5Mmlpaaxdu7bH4+x2Ow8//DALFy4kKyuLhQsXsnbtWiZOnMjIkSOZNGkSu3btAtSW6Hnz5jFr1ixmz56N1Wpl/vz5DBkyhPPOO4/x48d748x3333HxIkTGTVqFBdddBGtra0899xzlJeXM3PmTGbOnLnfzxIQEMBvfvMbMjMzmT17NjU16u/UjBkzuOeeexgzZgz/+te/2LBhA9OnT2f06NHMnTuXiooKADZs2MCIESMYMWIEL7zwgve8S5cu5ayzzgKgtbWVa6+9lmHDhjF8+HA++ugjHnzwQdrb28nKyuLyyy/3lgXUXrz3338/Q4cOZdiwYSxcuNB7zhkzZnDhhRcyePBgLr/8cm88lqQTmssBFVthxydQ8PPhNQ7UF3bfVrVVxomjTMYJGSck6ZhytEPpetj+MRSvhI7mQz+2fFP3baVrwe3qteLpeu1M/ZiiKDz00EP88ssvaDQaysrKqKpSH+wGDhzIhAkTAFixYgXnnHMOJpMJk8nE2WefDagV4cqVK7nooou857TZbMf+g0iS1D8Vr4S3zwOnp/V34GQ4/38QFHfwY8NSu28bdAaYo3q3jFI3eXl5LFq0iNdee42xY8fy3nvvsXz5cj7//HMee+wxzj333G7HGAwGHnnkEdavX8/zzz8PQHNzM8uWLUOn0/HDDz/w0EMP8dFHHwGwceNGtm7dSmhoKE8//TQhISFkZ2ezfft2srKyAKitreXRRx/lhx9+wGw28/e//51nn32Whx9+mGeffZYlS5YQHh6+38/R1tbGmDFj+Mc//sEjjzzCX//6V2/Z7HY769evx+FwMH36dD777DMiIiJYuHAhf/jDH3jttde49tpref7555k2bRr3339/j9f429/+RlBQENu2bQOgoaGBCy64gOeff57Nmzd32//jjz9m8+bNbNmyhdraWsaOHcu0adMA2LRpEzt27CA2NpbJkyezYsUKpkyZckg/M0k6bu3+Th1upnimRRg2H057AsxhBz82fnT3bZnng98hHCsdERknZJyQpGPC7YYtC+DLezq3Tb1X/WMwH/z4jLNg5+e+24bNB42214p4UiSO3n33XWpqatiwYQN6vZ7ExETvEo5m88F/EG63m+Dg4B4rPUmSTnIdzfDdw51JI4DiFVC+8dASR9HD4Nz/wDcPQkcTDJgMsx8Gg9/RK7MEQFJSEsOGDQPwtsIKIRg2bBhFRUWHfJ6mpiauvvpqdu/ejRACh8PhfW/OnDmEhoYCsHz5cu6++24Ahg4dyvDhwwFYvXo12dnZTJ48GVBv4idOnHjI19doNFx88cUAXHHFFZx//vne9/Zu37VrF9u3b2fOnDkAuFwuYmJiaGxspLGx0XuzfuWVV7J48eJu1/jhhx9YsGCB93VISMgBy7R8+XIuvfRStFotUVFRTJ8+nXXr1hEYGMi4ceOIj48HICsri6KiIvlAIJ3Ymivgy990Jo0Atn0AI6+A5OkHPz5+LMz5Gyx9TG2RzjgHRl8LmhN24EC/IeOEjBOSdEzU56vPAl0tewYGnwVxow5+fNIMmHQXrH4RUGDUNTDotF4t4gmbOLJYLLS0qF14m5qaiIyMRK/Xs2TJEoqLe55lfPLkydx88838/ve/x+l08uWXX3LTTTcRGBhIUlISixYt4qKLLkJRFLZu3cqIESN8riNJ0knI3gp1ud23H+pwNb0fZF0GA6eAow0C48AU2LtllHpkNBq9/9ZoNN7XGo3msOZ6+NOf/sTMmTP55JNPKCoqYsaMGd73DqVxQlEU5syZw/vv985Y9K7LFO+9vqIoZGZmsmrVKp99Gxsbe+Wah6Pr967Van/1vB6SdNywtUBrDzHBeojD1UxBMPEO9QHCbYegAWDw790ySj2ScULGCUk6JjqafBuh97LWH9rxlii14XnU1WojRUgi6Ay9WsQTtqkiLCyMyZMnM3ToUDZv3sz69esZNmwYb731FoMHD+7xmLFjxzJv3jyGDx/O6aefzrBhwwgKCgLUXkuvvvoqI0aMIDMz0zvB9iWXXMJTTz3FyJEj5eTYknQyMkdA5gXdt0dmHN55Qgaox8ikUb+3b4NBU1MTcXFq77I33nhjv8dNnjyZDz74AIDs7Gxvd/4JEyawYsUK8vLyAHVIQW5ubo/X6onb7ebDDz8E4L333uuxVTY9PZ2amhrvA4HD4WDHjh0EBwcTHBzM8uXLATXW9WTOnDk+81o0NDQAoNfrfVrO95o6dSoLFy7E5XJRU1PDL7/8wrhx4w74OSTphBUYA4n7/L8UGgg9jLkxNRoIS4aIwTJpdByQcULGCUk6LEHxEJTgu81gVhNAh0qrh/BUiBjU60kjOIETR6BWjNu3b+f1119n1apVbNu2jddff52dO3eSmJhIYmIi27dv9znmvvvuIzc3l2+//Zbi4mJGj1bHlSclJfHNN9+wZcsWsrOzefjhhwG1gs/OzmbTpk1ycmxJOhlp9TDpDnXogBBgCoaz/w2xWX1dMqkXff755956f+bMmWRnZ3snPX3ggQf4/e9/z8iRIw/YKnrbbbdRU1PDkCFD+OMf/0hmZiZBQUFERETwxhtvcOmllzJ8+HAmTpxITk4OoC7McNpppx1w0lOz2czatWsZOnQoP/30k7ecXRkMBj788EN+97vfMWLECLKysrwr27z++uvcfvvtZGVl7XcC0j/+8Y80NDQwdOhQRowYwZIlS7zlGz58uHfS073OO+88hg8fzogRI5g1axZPPvkk0dHRB/iGJekEZrTA6U93Jo8ComD+2xA1pG/LJfUqGSdknJCkX80SDfPfUqewADVhdOkCNRHUT4jjaZb6MWPGKF1XOgPYuXMnGRmH2bJ/AJdddhnZ2dl0dHRw9dVX8/vf/75Xztvb5ZQkqZ+xt0NzKehMEJxw8P17mRBig6IoY475hfuZYxEnfi2Xy4XD4cBkMpGfn88pp5zCrl27MBiOrFUoICCA1tbWXipl/9BffmaS1KtsLep8R0aL2gvpGJNxQiXjxImhv/zMJKlXWRugrRr8QiAg8phf/kBx4oSd4+jXeu+99/q6CJIkHY8MfhCe1telkPoxq9XKzJkzcTgcKIrCiy++eMQPA5IkHUeMFoiw9HUppH5MxglJOsn5h6h/+iGZOJIkSZKkY8BisbBvK/fhGD9+PDabzWfb22+/fcK1IkuSJJ2sZJyQJKm/kokjSZIkSToOrFmzpq+LIEmSJPVjMk5IknS0nNCTY0uSJEmSJEmSJEmSJEm/nkwcSZIkSZIkSZIkSZIkST2SiaNe8s0335Cenk5qaipPPPFEXxdHkiRJkiRJkiRJkiTpiMnEUS9wuVzcfvvtLF68mOzsbN5//32ys7P7uliSJEmS5EM2ckiSJEkHIuOEJEk96bPEkRDCJIRYK4TYIoTYIYT467G47qebypj8xE8kPfgVk5/4iU83lR3xOdeuXUtqairJyckYDAYuueQSPvvss14ordQb6lttlDe243IrfV0USZIOQ1/FiROVbOTYv5qWDiqbOlAUGSck6Xgi40TvknFi/yqbOqhu7ujrYkhSn+nLVdVswCxFUVqFEHpguRBisaIoq4/WBT/dVMbvP95Gu8MFQFljO7//eBsA546M+9XnLSsrIyEhwfs6Pj5ermrQD9gcLpbuquFvX2VT12rnigkDuHpSIvEh/n1dNEmSDs0xjxP9xaebynjq212UN7YTG+zH/XPTjyhOgW8jB+Bt5BgyZEhvFPm41Nrh4OttlTz13S5sDhe3TE/hojHxRFhMfV00SZIOjYwTMk4cVbUtNj7eVMYLS/LQawW/nTOIM4fHEORn6OuiSdIx1WeJI0Vt1mv1vNR7/hzVpr6nvt3lTRrt1e5w8dS3u464opX6n21lTdz8zgbv6/8tK0SrEZw1PAaBIDHCjNnQl7lTSZIOpC/iRH8gGzmOnXXFDTzw0Vbv6ye/3UWgn46hscGY9BqSIswYddo+LKEkSQci44SME0fbz7k1PPb1Tu/rhz7ZToi/gQiLkSA/PUnhZnRaOfuLdOLr06dmIYQW2ACkAi8oinJUa6byxvbD2n6o4uLiKCkp8b4uLS0lLk4movrajvLmbtsWriuh1ebindXFXDg6nvvnDiIq0O+ol6W0wUp2eTM2p5vB0RbSoixH/ZqSdCI41nGiP5CNHMfOTzurum17f20JUYE1LN1VzS3TU7hpWjLB/ke/Zbmwto2dFc0IICMmkMRw81G/piSdCGScUMk40fucLjfvr9vTbfsnm8rYU28lv6aVP56ZwfwxCfgdg8boXZUt5Fa1YNRpyIwNIi7k6D/DSNJefZo4UhTFBWQJIYKBT4QQQxVF2d51HyHETcBNAAMGDDii68UG+1HWQ5IoNvjI/tONHTuW3bt3U1hYSFxcHAsWLOC99947onNKRy7EX99tW1SgidpWGwAfbihlWloE87KObqVbWNvGta+vpajOCoC/Qcu7N4xn5ICQo3pdSToRHOs40R/IRo5jp6ehy3vjhFuBF5fmMzE5jKmDIo5qOXZWNHP5K2uob7MDEGY28M4N48mICTyq15WkE4GMEwfffqhknPCl1QhSws2sL2rw2R5hMbK5pBGHS+HPn2czPD74qN/Xb9rTwGX/W+NNGKZEmHnlqjEkRQQc1etK0l79ol+doiiNwBLgtB7ee1lRlDGKooyJiDiyG7f756bjp/ftcu6n13L/3PQjOq9Op+P5559n7ty5ZGRkMH/+fDIzM4/onNKRyxoQQmqXylSrEVw0Jp6fdlZ7t23YU3/Uy7Eyr9abNAKw2l38+6c8dpY3HfVrS9KJ4ljFif5gf40ZvdnIYbfbWbBgAfPmzTuicx7vZqZHEh7Q2ZvIpNcwOTWMraWd9fOeemtPh/aqTzaVeZNGAHVtdhasK2F3VctRv7YknShknJBxorcJIbh8wkDMhs7nxxB/PTFBflS32LzbyhqOLGF3MDani+d/yvPpZZZf08Y3OyopqG49wJGS1Hv6rMeRECICcCiK0iiE8APmAH8/mtfc23WztyeSAzjjjDM444wzjvg8Uu8ZEOrP69eOZXt5E60dTnRawbPf52J3ub37jIgPPurl6Omho7iujf/+UsDtM1PlsDVJ2o++iBP9wf1z033mroDeb+RwuVxcd911J30jx6BoCx/cPJEd5c3YnW5sDhdPf5/rs8+xGAqws6L70OrCmlYeX7yTR84ZKhd1kKT9kHFCxomjbXh8MB/fNpnsiiZQoKrFxr9+2O2zT3Tw0V1QocPuIq+me4KouM7KX77Yzj8vGUmo2XhUyyBJfTlULQZ40zMuWQN8oCjKl0f7oueOjJNjf08iCaH+JISqN9y7q1owaDtbDGZnRDI+Keyol2FiShj//aXAZ9u0QRF8ubWCUzKiZOJIkvavT+JEX5ONHMdWckQAyZ7eqdvLmtBqhPe9y8cPYFhc0FEvw3kj41i2u9Zn28gBIbz0cz751a0ycSRJ+yfjhIwTR116tIX0aPV+fXVBHTpPnBACfnvKIAZHH91hxUH+BuaPTuCp73b5bB8Q6s+CdSUU1Vpl4kg66vpyVbWtwMi+ur508kmLsvD+jeMprG1Dr9WQEmk+JktpjhoQwl/mDeHZ73Jpd7g4e0QsdqebmhYbBl2/GC0qSf3SyRwnZCNH3xgaF8Rnt0+mqK4Ns0FHSmQAAcajf6s0LS2Cu2al8vKyAgSC+WMT2F3dgs3plnFCkg5AxgkZJ461CclhfHnXFErrrQSbDaREBGDSH/3VN88dGUdFczsL15XgZ9By5YREb4ODjBPSsSDXIpdOKpGBJiIDj2530n0F+um5ZlISCSH+bChu4KecanIqW0gM85cTn0qSJPUzscF+RzxPyOEKtxi5fUYKKZEB7Chv5pvtleyptzIuMZRBkbJXqiRJUn8yMMzMwLBju/JlXIgf952azpCYQPKqW1m0voTqFhsXjoojKUKuwikdfTJxJEnHyNjEULQagcPl5soJA5mYEuYdRidJkiSd3IwGHZNTwjHqNLjcChkxFsYnhxFmkcMPJEmSJAj2NzAzPRKzUYcQgqyEYMYlhWA2yEd66eiTv2WSdIwE+umZkR7JjPTIvi6KJEmS1A+FW4ycNjSG04bG9HVRJEmSpH4oJtiPc7LiOCdLDlOUji2ZOJKkXlBQ0+pdFScjJtA70aokSZIkAeyqbCansgWjTkNmbJDscSpJkiR5udwK2RXN5FW1YDHpyYwLJCbo2A6blqQDkYmjXnDdddfx5ZdfEhkZyfbt2/u6ONIxtrOimcv+t5oGqwOAYH89790wniGxR38lHkmSJKn/21jcwOWvrPEunZ0Q4seb142TjQySJEkSACvyarn2jXW43AoAIwcE88Jlo475nHuStD9yCvZecM011/DNN9/0dTGkPvL5lnJv0gig0ergk03lfVgiSZKk7q677joiIyMZOnRoXxflpGJzunjp53xv0gigpKGdlfl1fVgqSZKk7mSc6BuNVjuPfLnDmzQC2LSnkW1lTX1YKknydfIljrZ+AP8YCn8JVv/e+sERn3LatGmEhoYeedmk41JOZUsP25r7oCSSJEn7Jxs5+obN4Sa/prXb9pJ6ax+URpIkaf9knOgbVruL0ob2btubujRMS1JfO7kSR1s/gC/ugqYSQFH//uKuXkkeSSev87Jiu227YFR8H5REAqB2N+xaDEUrwFrf16WRpF9HNnKcMAL99Fw8NqHb9kkp4X1QGgm3G6qzIedrKFkLHbKhRzpOyThxwoiwGDl/n2cHISA1Ug5n7hNOO1RsVeNE2UZwdE/qnYxOrjmOfnyk+w/e0a5uHz6/b8okHfcmp4Xz4OmD+fePuwG4Y1YqU9PkA0Gf2LMG3jkf7J7W/SHnwulPgiWqT4slSYdlbyPH3ni1t5EDZKw6Tp09PJa6VjtvrCzCz6DlwdMGM3pgcF8X6+SU9z0svBxcnpb8iXfAtN+BX2DflkuSDoeMEycUvVbDzdOScbrcfLSxjIgAI3+eN4ShcbJeOubcbti2CD6/HRTP0MG5j8OY60Fv7Nuy9bGTK3HUVHp42yXpEISZjdw8LZl5I9SeRzFBJoQQfVyqk1BHM3z7UGfSCCD7U8i6DCxz+6xYknTYZCPHCScm2I8HThvMlRMHotNoiA4y9XWRTk7N5fD5nZ1JI4BVz0PGWTBgYt+VS5IOl4wTJ5yBYWYePXcod85Kw6TXEGGRcaJP1OfDV7/tTBoBfPcHSJoG0Sf33F8nV+IoKN4zTK2H7ZJ0BIQQctWDvtbRDFXbum9vqTr2ZZGkIyEbOU5IWo0gPsS/r4txcmtvhNYeYoKME9LxRsaJE5JBpyUhVMaJPmWtA2eH7zbFDW01fVOefuTkmuNo9sOg3+fhXu+nbj8Cl156KRMnTmTXrl3Ex8fz6quvHtH5JEn6FczhMOi07tvDko99WSTpSOyvMUM2ckjSkbHEQNQ+LcZCQGhS35RHkn4tGSck6egIjAP/MN9tBjMEd5+r8GRzciWOhs+Hs5+DoARAqH+f/dwRd+l8//33qaiowOFwUFpayvXXX9875ZUk6dDpTTDjIYgf63ntB6f9HWJG9G25JOlwyUYOSTo6/EPgnBcgfJD62hQE578CERl9Wy5JOlwyTkjS0RGcAPPfhkDP4kfmCJj/FoSm9G25+oGTa6gaqEkiOfZXkk5MkYPh8o+gcQ8Y/CEkCTQnV35cOgHsjVE/PqIOOwiKVx8GeqGRQ5JOerFZcO1iaC4DUzCEDOzrEknS4ZNxQpKOnsTJcONP0FoN/uEQFNfXJeoXTr7EkSRJJza/IPAb1telkKQjIxs5JOnoMYerfyTpeCbjhCQdPZYY9Y/kJZviJUmSJEmSJEmSJEmSpB6dEIkjpetyef1Qfy+fdPQ1Wu1Y7c6+LoYkSZLUT9W32elwuPq6GJIkSVI/5HIr1LfZsDllnJD6xnE/VM1kMlFXV0dYWBhCiL4uTjeKolBXV4fJZOrrokh9oLqlg6+2VpBf3Up8qD87ypsYFhvE7CFRpEQE9HXxJOmkoShKv4wRUncnW2NLaYOVRetLaXe4sBh15Fa1MC45jBmDwkkINfd18STppCHjxPHjZIsThTWtvLW6mCA/PW5FobCmjRnpEUxODSc6yO/gJ5CkXnDcJ47i4+MpLS2lpqamr4uyXyaTifh4uTzmyeizTeV8sL6EsYmhPLE4B4AvtlTw3to9vHfjBGKDZWUvSUdbf29gkDqdbI0tDqeb/yzNp7jOilGv4ced1QB8sbWCCcmh/Ofy0YSYDX1cSkk68ck4cfw42eJEc7uDhz7dRnywP2sL69lR3gyoceLisQn8dd4QTPrj/pFeOg4c979ler2epKSkvi6GdIJqtNppszmJsBgx6LSHdWxtq41Xlxdy/qg4XllW6PNeUZ2VnMpmmTiSpGPgeGhgkDodb40tda02bE43UYEmtJrDe+Asb2pn4boS7piVyj9/2O3z3uqCevJqWhlrDu3N4kqS1AMZJ44vx1ucqG7uwOVWiA4yHXZisqTByqr8eu45JYxFG0p93vtgfQnXTkpkcExgbxZXknp03CeOJOlocLsVVuTX8tcvdlBcZ+Ws4THcMTONlMhDH15m0GoI9teh0QhcPXSpdblPrm62ktRXZAODdDTYHC5WFtSSW9lKm91JcriZcUmhxAb7H/I5DFoNZqOO/Y26kHFCko4NGSeko6G53cGy3TXsqbdic7oZFGlhXFII4ZZD7y1l0GnQaUSPcUJR6PEZQ5KOhhNicmxJ6m05lc1c+/o68qrbcLgUPtlUzhPf7KTV5jjkcwT66bl/7mB+ya3hzGG+yzmGBxhIj7L0drElSZKkYyS7ook1BfX8/Zscnvsxj999tI1lu2sPa+6NmGA/HjxtMDmVLYxNDPF5LyPaQkqEnONIkiTpeLWtrJGluTX8/Ztd/POH3fzuo61s2NN4WOdIDDVzy/Rk6tvsDAzzbZg4NSOKRDkXnnSMyB5HktSDnRXNOPdp6f1hZzX51W2MSAg+5PNMSQ0n0KSjvLGD9GgL32dXMSI+iEvGDWBAmKzoJUmSjldVzTb++0uBtxXY5nTz2Nc5jEwIYVD0oTcMnD0iloRQPxqsdsYlhbJ8dy1T0sI5b2QcEYfRKi1JkiT1L6UN7Sxa3zm8rMXm5MlvchiVEExE4KHV73qdhuumJLGpuJHxSaFs2NPAxuIGTh8awxnDYzCb5OO8dGzI3zRJ6oFJ330+o1B/A602J7sqm0kOD0CvO3iHPaNei0aj4Znvd6ldVKMsJIT4ERcsHwYkSZKOZ202Z7ehA03tDiqb29FqBEnhZjSHMOdRgEmH063w2Nc5aIUgOdJMcriZhJBDH/ImSZIk9T/tdle3bfk1beypt2J1uBh4iI3IgSY9TR0O/r44B3+DlsRwM6lRASSEyLlSpWNHDlWTpB4MirIwakCwz7brpiSxpbSRM59bzqsrCmm1OXs81uFy09KhDmlrtNr546fb2FPfTlWzjWW7a3n06xx2VrQc7Y8gSZIkHUXJEQHo9kkMRViMLN1VwxnPLeOTTWXYne4ej7U7XbR5hj6XNbTz2w+2UNHUQWljO7/k1nLfh1vJq2496p9BkiRJOnpSe5gbdWhsIK+uKOTM55bzU07Vfo+1OVxY7eqzRmFtG7/7aCtVLTYK66ws2VXDXe9voqi27aiVXZL2JRNH0gnJ5nRRXNdGVXPHrzo+LcrC704bzP1zB3HnrFR+f/pgQv11vLOqGKdb4YnFOez0LIfZVU5FM2+vKuLmt9bzwpI8yhrbe0wSlTf9unJJkiRJvaPN7qSoto3aFtuvOn5oXBBPXjgcf4PaQzXUbOCuWal8uKEUm9PNAx9tJX+f5I+iKGwva+SVZQVc98Z63l5VRHmjlfo2+z77QeWvjF+SJElS72hud1BU20aD1X7wnXswckAID50xGINWfeSOC/Zj/pgEvttRRavNyd3vb6a4zjf5Y3e62bingeeX5nHt62v5ZFMZZY3tOFy+XVytdhc1rb8ufknSr9FnQ9WEEAnAW0AUoAAvK4ryr74qj3TiKK5r4x/f5/L5lnJC/A38+ewhnJoZTUObnZ9za/hmeyXjk0OZmBzGkl01bClp5KwRsUxLCyfSM97YanPiZ9CSHhWIxaRjZX4trywvpKbLA0ZZYztju1x3dUEd//5pN8V1VqalRVDXamNVfh0jEoLYUtLkU8Z42bVUkg5KxgnpaNld1cKjX+3k59wa4oL9+L/zhjI1LYLSBis/7Kzml9xq5gyJIiMmkG+2V1FY28oFo+KZmBJGsL8BUIcgpEYE8No1Y+mwO1mZX8dT3+2iuUNtIXa5FSqa2smIDfS+/iW3hueX5FHbamPOkCg2lTQSajYQYTH6xBeNgNhgGSck6WBknJCOlm2lTTz82XY2lTQyKCqAx84bxpjEUPKqW1m8rYINxQ2cNzKO6CATn28pp9FqZ/6YBMYmheJvUB+xbU43YxNDefO6sXQ43Py4s4rHFu/0zqPaYnNS02LzDlnrcLj4YWcV/1maT4fDzZnDo/l8czlXTxqIUafB1qUXq8WoI+oQ50mSpN7Ql3McOYF7FUXZKISwABuEEN8ripLdh2WSjnO1LR289HM+n24uB6Cuzc5dCzbz+e2TeHftHhauUyeoS40K4JZ3NnpbdJfm1nDTtGQemJtOm93Ji0vy+e8vBQAEmnQ8eHoGze2+K6rFBHVW1nnVLVz/xjraPGOZ31u7h9OHRrOttJE/nJHBXe9vpr7Nzvwx8YweGIKfXovN6cKo6z6XkiRJXjJOSL2uvMHKHz/dzprCekBtBLjhzfV8dNskHv9qJ6s920cOCOGa19bR4hmW/MPOah49N5MrJiRS3dzB/329k888sSbSYuS2GSk0t3cOYdYIiO4SJ3aUN3HjW+u9DwyvLCvk2smJvLKsgGcuGsFdCzbhcilcMi6B4fHBaAQ4XW50Wtk5XJIOQMYJqdcVVLdy67sbKG1oByC3qpXr3ljHwpsmcsu7GyiuswIwITmM+z7c4u0N9NW2Sl6+cjSnZkZTUt/G/Yu2emNKamQA52TF0uHoTP6YDVrCA4ze1xv3NHDHe5u8r5/7MY/fnJLGO6uL+MfFWdy3aAv+Bi2XjhtAZmwgbkXtySrEwefTk6Qj1WeJI0VRKoAKz79bhBA7gThAVvTSYbM73fycW8O20iY+99zId1XdYueDLqsamA26bsMAXl9RyGXjBlDZ3OFNGgE0dzh5bUUB54+K4/21JQgBd85KZUhMoHef3KpWb9Jor293VHLnrFSiA018evskiuus3P/hFt5ZsweNgNtmpHDj1BSC/PW99TVI0glFxgmpN7XZnCzeXkllU7s3abSX062QV9XivcEHdbhYyz5z2f3rhzzmZkazuaTRmzQCqG5R57CbmhrGsrw6dBrBX+dlkhLROb/F9rKmbqt1frGlnAtGxTM0NpAv75hCQW0bv/1gM/9bVoheK/jTWUO4aEw8fnq5lokk9UTGCak31bfZ+GhDGVa705s02qu5w0leTas3aRRmNlDawxCy//ycz9RBEfySW+sTU/KqW2mw2kkJN5Nf24ZRp+Hp+SMYGNa5EMKPO6u7lenHnGomJIUyMz2CxXdPZUd5M7/7cCstNid+ei1PXzSc04bGoD2ExRgk6Uj0izsRIUQiMBJY08dFkY5T2eVN3PT2es4YGkN8iD+7qnznFTJofSvT/SXmFaCyh/mH8qrb+OfFIzl7eCxBfnpSIs2YutzIm3pYYc3foCM92kJ8iD8dThcvLs1nT70ahNwKPL8kn2FxweRWtRDsr2d8chiDog59CWdJOpnIOCEdqU17Grlv0RaunZxIiL+eBqtvL9IA08GT+ArqA0JRXfcJSTeVNLLgxvHUtNoJDzCSHGFG36W30N65kLqymPRMSgkjNMCI0mrj4c+3U9uqzqXhcCk8/NkOBoT6s3FPA3HBfoxPCiMx/NBW4ZGkk42ME9KRWpFXx/99vZM7Z6Wi14puSSGLsfPeXwjotrSmZ5NA7T20r7WF9bxyzRjKGzuIDjSRFG726S0U0kNjssWkY25mNH4GHQKbN2kE0O5w8ZuFWwjy07OmoJ6USDNjE0OJk6tySkdBn/d/FkIEAB8B9yiK0m22YSHETUKI9UKI9TU1Nce+gNJxYXd1K4oC32dXcfHYBPRdEkWjBwaTEhnAeVlx3m1Wu4uoQKPPOa6ZlEh8iF+P8w9lJQQzINSf4fFBVDZ38MCHW3li8U62lTYCkBETSEZ0oM8xd85KZXJqOBqNoMHqYFV+Xbfzbi1r4pnvc/nTZzu45OXV7K6Sq61J0r5knJB6w6oCtQ7+fHM5N0xN9mlAOGt4DJkxgcwbEYPR0xCg0QgCjL7ta3fNTiPCYiItsnuSf0Z6BInhZgbHWNhd1cLd72/iXz/ksqtS/ZUdHh/cLe7cPTuNMYmhANS22imqtXY77/riBp77MY/ffbSN699YR2lD930k6WQn44TUGz7eVAbA19squWZSks97N09LJiUygInJoeg0gtpWO/Gh/j7PHAC3zkjBpNcyKSWs2/lPy4wmKTyA5AgzG/Y0cNu7G3hlWQGFNepCCjMHR/rEHa1GcP3kJIbFBwFq79Z9e8LaXW5WF9bz7yV53LNwC/cu2kKdnDRbOgr6tMeREEKPWsm/qyjKxz3toyjKy8DLAGPGjOme1pUkIMhPzdDbXW5eWVbAXbPTAEiPspASEUBBTSvxoX7cPC2ZLaWN2BwuHj13KOuLG9hR2sy8kbFMHxSBXqshIyaQh8/K4InFu7C73MSH+PHHMzMI9NPz2eYy7l6w2Xvdt1cV89GtkxgcE8hLV45iXVE9xXVWxiSGMDIhhEBPuYL99IxODGZVvu/wCJO+M3db32ZnQ3EDabLXkSR5yTgh9ZZYz3xDdW12Pt1Uxr1z0tFqYEhMIPEhfizNrUGn0XC/Z647m8PJPy4ewS+5teypt3LRmHimpIYDMCIhiFumJ/PyLwW4FciIDuSaSYnotRoWrivhyW92AfD19kreXbuHRTdPJDkigHdvGM+agnrq2uyMSwolKyEYk37vqmx64kP8ug2PMHbp0Zpf20Z2eTPxsjVZkrxknJB6y6DIAJbkVJNf00qwv577Tk3HpNeQGRtEeICBb3dUEhPsx5/OiqGiqR2ny8ULl4/i2+2VNLc7uGz8QMYlqY0Bk1LDuWBUHB9tVJNRk1LCmJ0RRYfDyT9/yPXOu/rNjio+2VjG69eOJTM2iA9unsCawnra7S4mpoQxPD7YOwwtPMCI2aD1mR5DrxVou7SErC6oJ7eqhYkBvg0VknSk+nJVNQG8CuxUFOXZviqHdGIYGhfEiPggtpQ2Ud7UwT++z+XVa8YyMTmUv36RTaTFxHM/5hFo0jEoysK3O6p4c1Uxfzwzg2CznrGJId6VCRwuN+OTQnn1mjFsL2uipL6dm95azz8uyeJ/XeY+Mmg1DAjzp7ShHavdxYBQfy4cndBj+cxGHQ+dnsF1b673rpxzweh4Ii1G7piVisPpZuH6Elpsjh6Pl6STkYwTUm+amBLmTczsrm7l3z/t5t0bx5McHsAd721kpadX6MebyjhjWDR2p5sXlxbw8NkZON1uRg0I8a6o5nLDGcNiGJcUSk5FC7urW7nhjfU8f/lI/rMkH1CHMeg0ggEh/hTUqMs5Dwwzc/mEgT2WL8Ji4ukLR3DjW+tpsTnRCLh+ShIh/nrunJVKq83JgrUltDtcPR4vSScjGSek3nROViwL1pXQ1O5gQ3EDedWtvHfjeEL8DVz5yhrya9Vhyh9vLOP6KYl8va2Gf/+Uz/1z02mw2hkeH4S5S4+hKycO4NTMaHZXtbCtrIlb3l7Psxdneedd1Qi1V1FEoJGdFc1UNXeQFG5mSGxQj+UbGObP0/NHcM+CzdicbvRawW/nDMKk03DX7FSqm218uKHUZwJuSeotfdnjaDJwJbBNCLHZs+0hRVG+7rsiScer2GA//nPFaHaUN9Hc7iQ1MoDM2EB2V7dSVGtlfJLaXbS5w8n64s4xx602J19urWD0wBCSwgPYXdXCvYs2s7W0GYNWwxUTBlBU10a91cEDH27lwtHxDI4JZECoP4EmHVXNNm5+ZwMut8LAMH/+c/mo/Vb2w+KD+ez2yRTVteGv19JgdbCltBGNUB8w7pmdxoiE4GPxdUnS8ULGCanXJEcE8N4N49lR3kyH083gaAsZMYGsLaz3Jo32+npbJfecksbSXTXUtzl4f20JU9MiiA32Y1tpI3e8v4niOiv+Bi03TUtmZ0Uz1a02Hl+cw/RB4YRbTN65KqICTTzz/S62lzUzIj6YZ+ePICUyoKciMiEljC/vmkJpvZUAk47yxnZyKlvRCIFGwAOnpZMue6VKUlcyTki9ZkhsEB/fOonsCnW045CYQFIiA/hpZ5U3abTXO6v3cN3kJMoa91DW2M7rK4qYmBzGlLQIVufXceeCTdS02Aj213Pr9BS2lDRR2dzBu6v3MCI+iEkp4ei1Ggw6DaH+Bv702Q721FuZNTiSv84bQkJo9/nshBDMHRLN13dNpbKpnQCTjvyaVorqrGiFwKTT8LvTB5O6nxgjSUeiL1dVW446d5gk9YrYYD9ig33nJ7I73QT66fl0Uxkz0iNYuqtzXPv0QRFsKWkCYHdVKzaHi398n8vWUjVY2F1uXltRxH2nprMyv46qZhuTksN4YWk+H24o5b5T0/nPz/ne8xXXWXns6xz+e9VozIae/2vtLeOmPQ08+30u28rU68cEmbhxarLP0s2KouB2K2jlUszSSUrGCam3DQgzMyDM92a8bT89PRUFzh8Vz0+eVW6qW2w0Wu088NFW76o6VruLf/6wm3tPHUROZQubSxq5d844/vblTp9FGu49dRClDe1sKW3k7dXF/OmsIftdAWdgmJmBYWZW59fxxDe7vNcaFBXAxWMSfObhc7vV6brlajrSyUrGCam3pUQGdEvut9md3fZzuhW0WsHl4wewaIPag6jBaqesoZ3b3ttIfZu60EGj1cGz3+dy07Rk/v1THmsK63n4rAz+8kU2FZ4FebQawUNnDObxr3P4KaeayanhXD8lqds1QZ1/b28Zl+XW8NjXOd5FFcYlhZIcEeDzPIHbBQjQyOcJ6cjI3yDphJZb1cK3OypZmltDVKCJu2anctHoeP50VgYxQSaW7FIfCKanR1DfZmfJru4TJmo1MDYxhLhgP1yK4m2Z7nB2Hy6wMr+W7LImvtxaTk5FM0oPqy2AurrP3qQRQEVTB5tLGmlpd6AoChuKG/jNws1c8dpavtpaTlO7vTe+DkmSJGkfbXYXiWG+cwaNSwolMcyfVpvD2/I8ONpCdYuNnRXdFzEIMOoYHG1hfFIoLR3Obit7vrWymLOGxwLww84q1hXVs3hbBQWeCVF78kNOlTdpBJBb1UpZYztN7Q7sThcr82q5+e0NXP/mOpbuqqa9hwcbSZIk6cjYnS46HC6C91nx7NysWOKDTWwpbaSmxYZGQFJ4AJXNHd6k0V42p5voQBMDw/yZNTiSOqvdmzQCcLkVPttczvT0CAB+yK5kTWEd3+2oZE8Pq3iq53Tx1upib9II1FXbmjoctHQ4wNYKuxbDOxfComugaAW4ZJyQfr0+nRxbko621QWdww8WrivBqNMwJS0MgzaIDzeU4qfXctfsVMYlhqLXCobFBbG2qJ7EMH8uGpNAh8NFkJ+B04ZGMzwuiJaOzgq364Slew2LD+LlZYV8n12FQavhrevGMiElvNt+u6u7PyzkVDZjMenZXtbEpS+vxu5Sxyevyq/jmYtGcMHo+N74SiRJkiQPm8PF/34p4PxR8eypt5Jd3szIAcGMSQxhZ3kTi7dXEuin4w+nZzAsLog2m5OYIBMVTR0Mjw9ibmY07Q4X/gYtF42OZ0xiCIU9rIxWb7UTaFJvuUbEB/O3L7PZUd6MxajjvRvHMyw+2Gd/l8vNpj2N3c5TVNdGiL+eTXsaufzVNd6VoJfuquHNa8cyPT2yt78iSZKkk1qj1cG/fsjj1ukpbC1toqiujYnJYYxNCmHh2hJW5NURYTHy6DlDSY+2UFpvxU+vpd3hYkpqOBOSw+hwujDqNVw7aSATk8NZmtu9obqu1c4gz1DkwTGB3PHuJmpabUQHGXnruvHe9/Zq7XCyvUsjdGd57VhMetj9Ayy4rPONnC/g2m9gwPje/YKkk4ZMHEkntFEDQryrGYCa8U+NsHDxmASmpkWg0QgSQvwQntUIHjpzMDe/vYHLJwzk8a934vbclA+JCUSv1TAlNYxAk47mDidbS5s4JyuWzzaXAxBqNnBuVhyPfrUTUIe6PfrVTt69cYJ31TeAulYbYxJDeH/tHp+yzsmIIibYj8XbK71Jo71eWJLHKRmRBHkmZpUkSZKOnEGnYWJKGM9+n0timD/JEeqKOkNiAvntqelcMm4gRp2WOM/wMLNRx5MXDOehT7YxMz2Sp77d5T3X1NRwgvz1nnghcLg6e5yelhnNst21xIf4MSwuiK+2VQDQYnPyv2WFPHPRCPRdGiPqrXZOHRLFhi5z8gHMGhyFv1HPp5vL2bdD6+sri7xxTZIkSeodgX46hsQG8vjiHAZHW4gN9uOTTWWMSwrl35eOorKlA7NRS3SgGicSw808ccEw/vdLAYnhZp7+rjNOnD8qjuggP0YNCOl2nVMzo/h6WwWZMYH46bXUtKqL6VQ22fhqawWD5vgmjmxON7MzInlnte/zxJiBoejddljxnO8FFDfs+lomjqRfTSaOpBPatEHhjE8KZU1hPQBJ4WYGRVkobWwnOaL7xHEh/gb+felIfvfhVm/SCCC7opkGqwODTstb14/j79/ksKagjhumJPH+jeNxucHucnHX+5txdTkwv6YNq82Jw+lmXVE9awrrCfHXE2o2cOGoOD7eVIZbgZnpEcwfq67I1tNcFTqt8Ca3JEmSpN4hhODC0fH8kF1NnmeC0RHxQZj0Wmpb7d3ihKIoxAQZ+fsFw7n57Q0+7y3Lq2VSahhR6Ubeum4cj3+dQ3G9lfNHxnHWiFhsTheVTR387qOtPsftKG+mw+GiptXGmoI6Npc0EWExEOxvYHZGJD/urEYIuHBUPKdkRAFg0HaPBwatBhkmJEmSepdJr+Pu2WlsKmkkp7KFnMoWZqZH0GZ30mZ3krJPnHC4FFIjzNw3N53r3ljn897HG8sYHh/E9EER/O+qMTzxzU4a2xxcNSmRySlhnJYZzZrCOv7xw26f4/b2LCqua2NVfh07K5qJCjSRGRvE6IHBbChuRKcR3DQtmQnJYSAU0PbQ2KzVd98mSYdIJo6kE1pCqJlHzsnkux1VON0Kta02HvhoK1NSw3nx8lE+S2ZuLmngylfWcun4ATS1O7htRgp6z414basdAZh0WrISQnjlqrG0dDgINRvQazXkVrVQXNdGq8137PC8ETEE+ul49vvdvLq80Lt91IBgJqaEccesVCYkhTEiPhizZxjD2MRQ/A1arPbOOZTunj2IQD9Z2UuSJPW21EgLz148wpugKaxt495FW7huciJ/ONN3EusVebVc/+Z6bpqWjFGv4bopabgVBZ1WQ2FNG0II/A16JqaE8+4N42lzOIkIMOFyK+RWtVDVbPPpiQRwwag43Cj86bPt/OiZiBvg9KHRDAj1555T0picGs6wuEBMejVOzMuK5d01e3B6GiqEgGsmJcoGBkmSpKMgMy6I/1w+il9216AVgi2lTfxm4Rb+Mi+TayYlevdTFIXF2yv4zcLN3D4zlfgQfy4cHY/d5cag1bC5pBG9RuBn0DFnSBRjE0Owu9xEWkxY7U52V7VgMem79Sg9a0QslU3t3PrORu+8ewDXTkokIzqQGemRTE+LICMmsLP36uS7oeiXzpNoDTDotKP4LUknOpk4kk5Ida3qzXlUoJHC2jae+T4Xo07DvKxYbp2RQrvdRVVTB8meVROsdidPfbuLFpuTgppWnp4/gt8s3EJTu7raTmpkAH+dl+ldtsNs1HmTTivza7nmtXWkR1v4zSlpvLaiiKRwM2cNi2FOZhSlDR28vqLQp3wb9zQyfVAE//hhN8kXB3iTRgBDYgNZeNMEvt5eSXVzB/NGxDImMfTof2mSJEknkZqWDhQg0mJiV2UL//pxNxajjnNHxnHHrFTabE5qmjuI9qzWWdti48GPt2FzurHanTx67lDuXrAZm1MdWjwuMYTLxifgcLnxQ4vFT4/Fk/D/ZnsFd7y/idOGRPP3C4axprCOJquDWRlRzEyPIK+6zSdpBLB4eyX3nJLGP3/YzfD4IG/SCCArIYSFN0/gi80V2N1uzhkRy8gehj5IkiRJv15Vcwc6jSAswMiSnGpeWJpPeICBc7LUOFHV1E5Lu8Nb1xfXW3no4224FQjz13PnrFQe/HibdzTCGUOjGRITRIfDhUmvJdgzBYXD5WbB2hIe+TKbKycM5JFzMllbUI9bcTMnM5qpqWFsL2/2SRoBvLd2D9dNTuKZ73KZmBzmM+SZxClw1RewbRGYLJB5PsSNPjZfnHRCkokj6YRS29LB2sIGcqtbMOo0hJoNRFpMGHUaHjx9MG+sLKK4zkqwv56shGAGhPmj02po6XCyo7yZEH89pw6J4v21Jd6kEUBedSs7ypr4Jbea385Jx6jXAtBktfPIF9nYXW62lTVR22Lj/84byjfbK3jpl3w2lzZyzaREtBqBe59WZpenOSEq0NjtcwyLD+42WaokSZJ05EobrKwtrKe4rg0/g5Zoi4moQCMh/nrumJXKf38uoLrFRlSgkVnpkd7EUXOHg9KGdpLDzQyKtPDvn/K8SSOAtUUN7K5uZXtZE9dOTvL2/ilraOcPn25nSmo4g6ItvPRzAVohuHhcPEtyqskub+acrNgey+r2xIkIi2+c0GoEoweGMnqgbFSQJEnqbfnVLawraqCiqQOLSUdCiB+Doi0MDPPnkrEJvPRzAU3tDgaG+XNqZrQ3cd9kddBmdzE2MQSDXsuT3+zymcLi6+2VTEkLp6K5gzOGxXi3F9W28djXO5k3IhaTXsvLvxQQ5KfnkrEJLFizh91VrUzuYbEdu8uNTisw6dVnHh96EyRPU/9IUi+QiSPpuFTd3EFhXRtGrYaUyAAsJj02h4vXVhTx4tJ8734XjY7njKFR3DM7zZs0AnWFhHsWbiYtcgqDYwIJNRuYmxmNSa9lbWE9hbXdl74sqG0l0mKkvLGdJM945habk7wuK6TNHKxOlrr3Ol9urWB7WRP3nprOE4tzvPtFB5po7XBy9cSBZMQE+l6orQ5aKsAUBMEJvfad9ZqGIiheBQ2FED8W4seBX1Bfl0qSJMlHeWM7xXVWAkw6UiLM+Bt0NFkd/P2bHL7YUuHd75bpyQzXB3HrjBT+9cNumj2rZ1Y127j9vY18eddUBoT6E2ExMiYxhInJYeTVtPYYJ9o6nORWNlPR1EGsJ+HU0uHAanMxPinMZ5LU//sqhwdPG8yT3+ZQXNfGxWPiWbi+1Pv+0LhAimqt/O60dNIifefQqGnpoLbVTpjZQGSgqVe/t15RuxuKV0BrDQyYAPFjQO/X16WSJEnyUVzXRmlDO2FmA8kRZgw6LVXNHfzuo22s9yxOIAQ8MDedjOhALh03gKe+7UwGFddZufeDzXx4yyRCA4zEBJmICTIxNS2C8qYO7wTXXSmKwtJdVUxMDiXErDYKNFjtBPnpiQky8d9fCgAobWjn4c938LvTBvPE4hyaOxyMGRjiLRfAqUOiWJVfx2PnDSMxzOx7oaZSaG8ESzSYuyed+lzVDihaDo52GDgJYkeBVqYm+jP505H6JafLzeaSRpbkVGPQaZg5OJJhcUEIIcitauGWt9dT4Fny+OwRMfzxjAzqrQ5e+jnf5zyLNpSSGhXAmMQQ/t5l9RsAl1thT72VwZ4V026elsyy3TX8Z2kBc4ZE+SSExiaGMGpgCF9sLqeg1srVkxIZNSCECIuRM4bH8Pnmcow6DYNjLLy3z2ppRXVWMqIt3D4jhcXbKxmTGMI5WXH467WkRgZ4u7cCUL4ZPrkFanaCfyic/RwMOr3/VKTNFfDB1VCxuXPb3Mdhwq3IWVklSTqWOhxONhY38lNONREWI9MHRTDYk4jfWtrI9W+s99603zA1iTtmprK7utUnaQTwxsoiHjxtMGMGhniTRns1dzgpb2xnQKg/FpOev50zlJ9za/glt4apaRF8u6PSu++pQ6Iw6rWUNnXwrx93c/m4AQxPCCY6yMS8rBhW5td2+wwb9jQwODqQ5Xl1LLplIgadlhV5tcxMj2R2RiQBJh1pkQE+w9TWFNbxmwWbKW/qIDrQxD8uHsHEHlqi+0xdPrx1DjR3rmjK/LdgyDl9VyZJkk5KTe121hc1sGx3LUnh/kxJi/BOZr0qv5ab3tpAi82JViP4/emDuXz8ALaVNvkkZxQFXl9RxAOnpZMaEeDTgwigoNZKZXMHoQFGIgNNvHDZKJbn1ZBf3cqwuCC2eSa2Bpg/Jp5Wm4vCWivPL8nnotHxDI4JJD7En1Mzo/imS0zZe+2Kpg6C/PQsXFfCR7dO4rXlhWwra+LMYTFMTA4j2GwgJSKgc0VNtwt2fwef3wFttRA+CM77L8SNOkrf8q9QuR3eOAM6PN+NRgtXfgZJU/u2XNIB9ZOnUUnyta6onstfWeNd2ezFpfl8cPNEMmMDeX1FoTdpBPDFlgpOy4wm0mJin7ocAI0QRFiMBPnpfYafAXQ4XKwrrGdEQhDJEQEEGLV8urkcvVYwNzOK77OrCDDqODcrjgc+3OY9bvH2Sj68ZSIjB4Rwz+w0hKIwPCEYm8O97+UBCDUbuW9uOjdPT8HfoEWn1XTfqa0OPrkZajw9k6z1sOhquOkXiB56eF/g0VK13TdpBLDkURh8JoQM7JMiSZJ0clqSU8Ot7270vn5xaT6LbplIbJCJv32506el95VlhcwYFIHd2b2O7nC48TdoCfE3otMI74TTAHqtoNFqZ0tJI8PigsiICcRfr+WNFUXMyoiiud3BqoI6ksL8GR4fxJ8/3wHA6oJ6vthSzie3TSI9OpDbZqTyj+93d7t2kJ+enRXNGHUawgOM/GVeJm02JwFGXedDQBcl9VZufnsDjVY1llU2d3DTWxv48q4pDNy3tbmvlG/2TRoBfP9nGDgFzGF9UiRJkk5OH20o45Evs72vE0L8eO/GCRh1Gn77wRZaPIvauNwKj361k7GJobR0OLqdp7bVRrCfvtuwYYBgfz2lDe0IIciICWTUwBDPcLNC7j5FXUBhR3kzE5ND0Ws1PO4ZgbCuqIEvtpbz4c0TGRBm5vLxA9lZ0Uxxne/5/fQabE4XQX56ooNMPHXhCNodrv0vmlOzCz64Elyez1GbCx9eB9d/DwERv+JbPAryf+xMGoGa7Fr+D0gYB7ru37HUP/Tw9CpJfcvlVnhteaFPEsjmdPPV1nJa7U6W7e7eaptd3syAMH9ig3y77EcEGBmZEExieAB/v2CYz+o4l4xN4J01e5j/8iqW56nnjAz044nzh7G1tInaVjv3njqIl64YzcL1Jd3KuHRXDQDJEQFcNn4gj3+dw485VZzZZcwyqK0LyZFmhBAE+ul7ThqBOjytJsd3m9ulDgnrLxztPW9z2Y99WSRJOmk1tdt59vvcfbY5WFtYT2O7g417GrodU9HUQWK4GbNB67M9I8ZCZmwQ8aF+/HneEG/nSSHgxqnJPPXtLi58aaX3nAPDzbx05SgWby3HoNPwu9PSefz8YbyxssjnvFa7ix3l6kSmyREBXDgmHmOXiUv99FrSIgMobWjn9pkpDAj1R6tR40RPSSOA8qZ2b9Jorxabk7LGHurmvuKwdt/W0SjjhCRJx1RpvZV/7BMnShra2VraRF2bnYqmjm7HVDS1kxpl8XleAJg1OJKkCDMpkQHcPjPVu12nEdwyLYXff7yNi15axY5yNRmSEWPh5atG8+6qYgaE+vPQGYO5fVYqC9f5Pk9UN9vIrVJHOAyNC+LmaSl0vXSY2YBJr6XD4ebB0zOItJjQ6zQHXmm5oagzaeTdVgjN5fs/5liz1nff1lbTvdxSvyJ7HEn9jtXmoGmf4QKgzktkMeqZmR7B26t9h4MNjQsiKtDEy1eN4dEvs1lTVM/IhGDunp1GkJ8Ol1vhlIwovrpzCltKG6lqtlFc10ZSuBkBPPNdLmMHhmLx05MeHcjr146loKaN+jYbRXVt6Hq6iRewPK+aUH915TanW2F1QT1nDY/ht3MGUddmZ/SAYCamhGE2HMJ/NVOQOjxt38rU3E9aBwAiM8BoAVtL57ZhF0HwgL4rkyRJJ51Gq4N2h6vb9pYOByF+BsYlhbAq37cujQ32IzkigDeuG8efP99BTkUzU9MiuG1GCmajFp1GMH90AlkJwWza00ij1UF+TQtjEkPxN+h4Y0URowaEoNEIshJCeP/miRTXtlHdaqOyuR1ND8N1HS43P+dWE2Uxsquiibtnp9FgdWAxaUmJCCC7opn/XjGaCSmh3R5UehLqb0CvFTi6LLag1Yjuk6L2pehhoNX7PgBMuE2dZ0OSJOkYaepw+CxgsJfV7iQ8wEB8iB+lDb5J99hgPzKiLbx69Rj+/NkOyhrbOX1YNFdPSMSo0xJg1HHrjBRmDY5gY3EjVruTHRVNzM6IYkNxAz9kV5EZq06tMSklnEW3TqKk3kp5k5WGNrsnTvgOj2h3uFi2u5qYQD/WFNbxwNzB1LTaCA8wMCDUnx3lzbxx7VjGJx3iYgg99SoyBYFf8CF+c8dA2hxY8U/fbRNuBWNAj7tL/YNMHEn9jtMNszMiWVvoe9M/JS0crUZw9cQk1hc3sLNCTV7MH5PA6IHqagZD44J4+aoxbClp5J3VxVz35no0Ap6ZP4KzhsUyOCaQlfl1KIrCwDB/hBBEB5qItBiwuzqDi8WkZ0RCsPd1VKCJ699c731t1Gkw67XkVrbx7pps5o3oXBHny60VCFFBYpg/d8xMIcJioqXdgU6rwW+flm4fwQnqnEaLrlZ7GgFMvAMih/zar7L3hafBlZ/CL89A9XYYNh9GXSm7lUqSdEzptYKzhsfw0s8F3m06jSAt0oLZpOOPZwzhprc3UNbYjkbA7TNTGRqnzn80NjGUN68dy6Y9DbyxspiLX16Nv0HLf68czdS0CIbFBbNgbQmJYf4kh6vzRsQEmYiyGHEpChrUBE+Iv4GQAZ0Jm3aHwu8/7hzSHOino7bVRpvNxcOf7uDM4TG8uDQff4MWt6Jgd7qZmhbO7TNT1Ym72+2Y9FqMuv3HicRwMw+fNYQ/fbbDu+0PZ2SQHN5PhqkBRA9X48SSJ6C5FMZeB0MvkvPgSZJ0TBm0GuZlxfLhhs5FBwKMOmKDTURYTDw7fwQ3v72BBqsDvVbw8FlDGBRlQafVMCM9kndvDGBDUT2vrSjiwv+uIsRfz+vXjiUrIYRhcUE8+30upw6JVucXEoK4YBMDQv19yhBhMRJhMTKKEJwuNzsrWnwW8YkP9iOvuhV/g5b/+2onWQkhPPFNDgFGHQ6XG5db4bLxA5iRHomiKDRZ7fgbdOh1Bxg0FDEYpt4Ly55RXwsNnPXP/jWlRNwYuOwDWPoE2Jph8t0waG5fl0o6CJk4kvqdELOBaIuJ++em892OSvRaDadmRjMwTK2MUy12Pj8L7G1u7MEpGKMH4d+lR09VcwfXv7nemwhyAQ98uJWhseo8RmOTQthR1synm8tYU1hPepSFy8YNoN3uBNQEyJ56KzkVzbgVhYyYQCanhvHO9eP4eFMZFpOeASF+FNa2sqawgfyaNmpa7QyOtpBTqSazFAXunzsYIQTvrC7m9RVFRAYauXNWKuMSQ/c/XG3Q6eqcRg2Fak+jyCFgCux5374SPwYueh3sbWoPKfkwIEnSMRZpMREb7Meds1L5KaeaEH8DszMiGRCmrtwVGWji0XOH0mpzkhjmz6AoC0Z9Z0KmtKGdm97unB/Jandx36ItfH77FKKCTJw/MpacylY+31LBtrImRg0I4cLRcTRZHYR75rjIr2klt7IFvU5DRnQgZwyLJjzAwOeby4kL9iPIX09zh5NXlhXSYHUghCA2yES5Z3iETiO4ZXoKjVYHb6woUhdziAjgtpkp3qWd96XXarhojNorqqyxnZggP9KjAzAcINl0zGk0kDgFLv8AnB1qnJAkSTrGYoP8SI0M4IapSSzLrSUh1I+paRHe5E58iD9PXjgcu9NNUrjZmzTaq6CmjbsXbvG+brA6eOSLbN64dhyBfnpun5FCblUrX2wpp6C2jSmp4cQEm2izOzEbdCiKwq7KFvJqWrEYdQyOCeTayYkMirLwzY5KBkdZQIBGwNPf7cLhUpg3Io5APx3N7erIC3+DlvNHxVNU28aCdXtYvL2S0QNDuGFKEkNi97OisdECU36jJmJaqyEkUU0m9Sd6k1q+gZPB7exfvaGk/ZKJI6lfmpwWznc7KkmPtuBv0JEZY1EryJYqWPwA+uxP0QNmgxmu+Fhd7tejusXm03sI1MlPa1ptJEcEoBWC11YUescU51S28OS3u0iPDiA+1ExuVQtXvbaGyiZ1YtUws4F3bhjPlLQIpqRFsKuyhatfW8uFY+LZ7Vl57d01xVw1MZHTh8UQYNCSlRDM0Lgg3l+7h798oU7Kl1/TytrCet64dixTUsMRPSVctDp1Iuz+Mhn2/uhN6h9JkqQ+oNNqOCUjii+2lJMZG4jFqGd4fBCDogIpqbdyz8JNbChuBNQ6/K3rx5HZ5Sa7qrn73BZVzTbqrXaigtSFFp75PpcAo467Z6fhUhSaO5xUNFoJtxjZVtrI5a+s8a7ClhJu5pWrxzBnSDRzhkSzsaiBm9/ZwMXjEmjwzEn05spC/njmEIw6QbvDzdC4INKjLPz9mxxeW1EEQGFtG8vzann7+nGMSew54WLSaxkWH8yw+ODe+0KPBoO/+keSJKkPmE065mZG89nmUkYmBBFiNjB6YAgJoWbyqlu54c11FNWpc7IlhZv531WjSY20eI/vKU5sLmmkucNBoJ8epxseX5xDSkQA98xOw+FWaLO5qGpsJznSwprCeq5+ba13uNz4pFD+eXEW546M49yRcSzLreauBZu5fMJA7/Djt1YV89ezM3EpCk6Xm6yEEOJD/Ljj/U3euVWL66wsy63ljWvHkhl3gORRwvje/DqPDjk07bgiE0dSvxQeYOSy8QM5c1gMep2ms0dRxWbI/rRzR3sbfPN7tVu8n1p5xgSZMOk1dHRZ4SzAqCM6UE10NHc4vUmjEH89k1LCaWp3UFDTxvD4YBZvq/AmjQDq2uwsWl/CNZMGUlBrpbC2lVumJxNuMTJmYDDrixtRFHjTMzHqvy8dyYAwf1ptTv63zHdia5db4ZfcGkL89QyNC+7Nr0ySJOmkEhvsx83TU2iw2vHTazF5ehStKazzJo1ArcNf+aWAJy8c4e3eHxfs1+18A0L9CA9QexM1WB34G7RcNCae537cjcOloNMIAuZlMijKwivLC71JI4D82jbWFtXT7nCTU9GMViP401kZGLQaEkJMhJiNnDE0hrdWFWN3ublhahIDw/ypbung7dXFPuVod7hYkVdLkJ+etCgLkiRJ0q+TFG7mrlmDaGp3YDZqvb0zv9pa7k0agZq0X7ytkjtnd9a5cSHd48SklHBC/NUhyjUtHaRFBTAhOYx//bgbtwImvYbowCwiLCb+76tsnzmW1hTWk13RRHWLjdyqFkx6DX8+OxOTXoPFqGP0wBBGJATzwtJ8jDoNt89MZWC4P4W1bd6k0V41rTaW5lYT5K8nPkQm6KVjQyaOpJ65nGqSpnyzmrWOHw1hqQc7qtcF+e8z4WdrVfedqrbjbG9C5xdEUV0bedWtPHH+cLaXNfHaikICjDr+eUmWd6ni8AADRp2GuZnRxAab+D67ilCzgQCTnrKGDrIrmrtdYkd5M1tKGqlotrG9rJmC2lbGJ4Vxx6w0bnl7Ax2ewHDh6HgWriuhuqWDi0YnEGjSsc+ixOi1Gn7OrT1xEkfNFaDR9Z8lPiVJOiY6HE62ljSRXdlCRICBEQnBfXIDG7JPnNjbMNDVppJGWjochAYY2V3VQkmDlX/MH8Gq/Do+2FBKRICRZ+dneZdajrAYOScrjud/yvO2BDvdCo98kc2oAcFkl/vGiQCjejs17/nlOD1Lgs7JiGJ2RiT/d94wdla0eJdgBnjwo21YjDpGDQjBz6DF0d59QYjt5U0nRuLI7VJ7C+tNctiaJJ1s2pugfKO6anBwAsSOhsCYgx/XizQaQcg+CwisK+q+8ubaonoURcHlVsitaqGu1c4zF43g2x0VfJddTWK4ujqa2VPfhwcYOXVItM8Knx0ON3/4dDsLbhxPQU2bz/njgv3YU9/O9W9u8G67fPwAhsUF8tylWWwta/ZZBe62dzfy7g3jiQw0otMIb2zZy+lSh8KdEIkjpx3aqsFg8XYEkPofmTiSela0DN45HxRPpjwwHq76DMKPffLIR2hyt01tSaeyvMRNrLWRK19b612qOC0ygA9unkhkoO9kdcnhAfzxrAyKaq3eiVXza9rYtKeR/101mjlDovh2h2+CanJqOG5F8L9fCqlptaHXqqslFNS08ddzMjEbdZQ3tBPor+fFJfm8uqyQc7Pi+O2pg7jxrc4AEWo2oNdq0Gshp6KZgto2Qvz1DI62EGI+/AmmrXYnrR1OQs2G/c+bdLS0VMHmd2Dlv0HvD6f8BdLPkN1OJekk8e2OKu5esNn7emhcIC9fOYbYHnrzHEtjBobw8j7bJiSHsbmkEYtJz5WvrfH2SJ2UEsbHt04iOsjkU+70aAsFNa3dVuSxu9yUN3ZwTlYsT3/XeYN/9ogY/vXDbu+NvRDqXHlBfnrq2hzs7iGZ9eaqYuZkRnH/qek+k10PCPWnucOJSadlW2kjJQ3tRFiMDI6yYDnQEsz70dqhrkAXHmDseYj00dS4B9b8Fza+CQFRMPcxSJ4Jun60CpwkSUeH2wUbXocf/ty5Lf0MmPc8mMP6rlzAGcOiWZ5X67NtaFwQG4obaLQ6uPmdDbg89fn5I+P47PbJxAX7eee4AxgaH0TJPquyAdS32Wlqd3DGsBgWdZmYe96IWJ76dpf3tVYj2FzSyIz0CGxOhZ93VXc71zfbK3j4rEyun5LEf3/pXAwiKyGYojoroxJC2LSngfLGDuKC/RgcE4BJ/yse79sb1ZUw+6IRuDZPncg7+1MIH6TGiYGT5Byq/ZBMHEnd2Vrgp0c7k0agroxSsrrvE0cxWTjmPon+pz+Dox17zFhWJtzEv38uYVBUozdpBLC7upWcSnUpZZvTRW2LDbNRR7C/gckp4Tz/02qfUzvdCrurW5k5KIIrxg9g0YZSFAUuHZdAq81JQ7udmlZ1CNttM1JZtL7EO8lpoEnHHbPS+NOn27ltRqp3Uu9paRH894rR/Jxbg79Ri8Wk553VxfzfuUM5+/nl3pbss4bH8Jd5md5hEodi054Gnvp2FzmVLZw5LJrrpiSRFH4MkzY5X8CPj6j/bm+Aj29UhwymzDx2ZZAkqU9UNXfwiGf+tr22lzWTXd7c94mjxBBunZ7CK8sLcLgUpqaFE+yv55NNZZQ2tvsMY16ZX0dtq41RA0Not7uot9oINOmxmPSkRloIMOpotXX2BvLTa/EzaJmWFkFuVStfb6vAoNMwITmM99eWAJAZG8g5WXFsKG5gSU41UwdFEB/cfU64cLMBrdBw3sg4Aow6VhXUE2Y2IAR8u72S9CgL815YgeJpZL5lejJ3zErz9m46GJdbYXVBHU9+k0N5YweXjkvg4rEJxB2r1mm3C9b8D1Y9r762tcD7F8P1P6iLLEiSdGKrL4Ql/+e7bdfXau8j8+S+KZPHzPRI5o+O58ONamLnjGEx1LfZWbqrmg/Wl3qTRgAfbyrjojHxhFuMtHY4aOpwEOJvIMxsJDncH42Arp2BogNNKMD8sQnUtNr4ObeGID89g6ICsNrVVZMnpYQxOTWcjXsaWLa7limp4cQGm9i4x7ecoWYjep2GG6YkER/ix9bSJqKCTLR0OMmtbGZbeRNPdklG/XXeEC4bPxD9oTYmO9oh/0f48W/q6mYT74BhF6qJ/mPB3gbf/RFyF6uvKzarHRduWtK/VpWWAJk4knritEFrZfft1rpjX5Z9GQPYGX8R20enE6R1sLTKxEffNHNKRhQ7yrsPMcutbKGswcqi9SW8tqKI6CATfz47k6RwfyxGPVXYfPZ3uBQCTHqSws3cOSuV8AAjP+6sws+gIzVSTcoE++tp6XAwKNrC+aPjqWrq4MutFWwuaSAlIgCXonDf3HQCPS3Dk1PDMeo1vLO6GKNOy/+uGs2d72/yJo0AvtxawcVjEpg66NAy/QU1rVzxyhraPAHo7dV7qGyy8a9Ls3xWmPvVmsuhZB3U7YbwNND5qQElLA2ih4GjDda92v24vB9k4kiSTgI2p5vGdke37V2TLH0l1GxkWlo4Go1Aq4FNexp56ecCrpmU2G2eCFCTYPnVLby3Zg/vry0hPdrCw2cPwWLS8cBp6Tz93S6a251YjDpun5XKwrXFPHRWJrHBJv50ZgYOl8Ky3BrGJoawcU8j52TF8djXO73n/3hTGc9dOhJ/g9b70KDTCK6dnIRWIwgw6ZmeHoFJr+G9NXuIDvbjqYtGcNVra71JI4CXfi5gbmb0fldc21d2eRNXv7bW2wvquZ/y6HC6+d1pg9FqeqElt6EIStZCUylEZqjLibod6rD2qExoqYSNb/geoyhQnS0TR5J0MnC2g8vefbu9rfu2Yywm2I9TM6OJClKT+ivyatm4p5E7ZqVS3WLrtn9tq52ciiZeW1HEp5vKmJgSzoOnD8bPoON3pw/mn9/v9vTsNHDz9GS+3lbBrTNSiA408eQFwymua2N7eRPxIX40dzgYlxTq0/vo441lPDN/BN9sr/LW2WaDljlD1ARORKCJU4ZE4WfQsmh9CZmxQfxmziAuedm3EfzRr3YyKSX80Ic5l26ABZd3vv72IdCZYOz1h/N17l/tbtizGtrr1USQrU1dCCgiXX2+aCrrTBrt5exQj5OJo35HJo6k7szhMPZG366lQhzT2fntThc7K1oorG0jzGxgSFwgYZ6hXCFmE0+utXt6F6kBKaeyhflj4tn1XYvPecYkhvDKsgJyq1u5cmIi5Y3tXPP6Wj6/YzK3zkjh3kWdy2yGBxiwOV3kVLYwLyuWFbtrqWmzs6qgnttmpKDXQHKEGa0QDIsLYmtpE8//lMeAUH/umzuIX3bVEBtsYnJKGKM8N/ZWuxMhYEZ6JFPTItAI2FNnpaS+e9fW2rbugWp/8qpbvUmjvb7fWUVZQ/uRz4lhrYcvf+tbkY++Bso2gDkCZjwIMSPV5T2rsyEkCYaeD0ID0SOO7NqSJB0XogONXDg6joXrOrvhG7QaBkUdu16PbTYnOZXNlNS3Ex1kYkhMoDdhHxpg5OVf8n0S9EW1bZw+LJoP1pf6nCc22I+Xfi6gqrmDW2aksGlPI9e8vo5Pb59EVKCRS8cOQK/T4HC6eXWZOlz58gmJXDkhkZV5tRTXt/FjTjV3zUojPdrCTzm+Q52dnkURHpg7mJIGK2aDlsmp4YweGOL5HA78DDpOHxbLqUOi0WgE28uae0zC1bf18BC2H7lVrd3mxHh7VTHXTEo88l5hTWWw8Aqo3Na5bdp9sOlddYjBpLsheABYYtRGh6ihkH66ei8RNODIri1J0vEhaAAkTISSVZ3bTMHHdPRCo9XOzopmqpptDAj1JyPGgp+ngTXUbODfP+X57O9yuRkzMIT1xZ1zIGmEupjO8z/l02Z38dtT0/l2eyV3vLeRV68aQ0ygkWsnJ6LRCKw2J//4PpcWm5P5YwZwy/QUVhfUUt1iY9nuWm6bmUJpfTsfbvCNQ602J9nlzTwwN53ypg7CAgxMSwtnqGfVtJZ2B6H+Bi4cncC5WXHotBpW5NWyTxWPw6XQYD30OEHhz923rXkJhl545HMN1ebBm/OgpVx9LQTM+RssfRyyrlCTU3p/MAVBR5P6nJk8Q933WPV4kg6LTBxJPRt+sdpyuOa/4B+mzl8TO+qYXf7bHVXctWCTt7X1nBGx/GXeEELMRhJC/Xnp8tHcvXATVc02wgMMPHruUJLDzeypt/LhhlL0Wg23zUjhl9waPtyoTk+9Iq+Oi8bEkxIRQH5NG4OjAnjwtMHsqbcSYNKRER2AQaclv6aVmhYbqVFmEkL9uWlaMn4GLcH+Bn4zJ43WDievLi9ku6eH0556K09+s4unLhyOG2i0Oliwbg8Wk563VhZjd7u5bUYKMwZFEGDSEx5oZPqgCH7O9W35TvJM3n0o/A3aHrcZdb0wz1FNTvfs/6a3Ycpv4Zen1Io9YTxMvltNMg2cCKteUFsIwtMhNFHtlSRJ0gnLoNNyx8w0LEY9H24sZWCYP78/LYOMmMBjcn2Hy817a/bwf1169tw+I4U7ZqV6e4i+cNkoHvhoK41WB/Ehftx1Shoh/nrqWu38mFONxajjvrnpvL6ikOV5ao/aX3bXctuMFLaVNVJS347FqPeZV2JEfBDXTE4ku6KZssZ2UqMCSAjzR6MRNHU4mD04iurmzkYAo06DzenG5Vb437ICmtod3H9aOpVNHSxYtwe3Au+sLsZs0HLH7DQmJYdh1GqIDTaRGO5PUW3nqj8GrcZnvr6D6SlOhHkWhzhildt8k0YAa1+BrEth9X8gaRrEjoC5j8K618ASDcv/AW4nJEyAoDi1tVmSpBOXXxCc8xws/yfkfAWxI2H2n3qcr/RoaO1w8q8fdvO6Z9VjgEfPHcpl4wag0QgyYi38/YLh/PWLHVjtLjJiLMzLiuOckXE89PE2Nu5pJMxs4E9nDeGvX+xgd7XaU2rJrmoePG0wz36fS0O7A6NOx4tL873XmJoWzrikUNYU1hEWYCAzJpDYYH/CAoy0tDuYmhbOTzmd8xntjRMOl5unvsvDz6Dlz2cNIbeqld3VrdS12vlgfSlxwSZun5nK2ER1kYH4ED8CTTqfFT7DzAbigg9jOLK5h5EOgbG9Mw9d2brOpBGoPU43vwtpp8La/6qNDJnnqnMaFa8EhxV+ebKzZ6olBkIGHnk5pF4jE0dSzwJjYNr9MPIq0BnBL/iYXbqiycrOimZun5lKUW0b32yv5LMt5VwyLoGJKWqvowkpYXx++xRqWm2EBRiICVJbT/927lBunZ5KS4eDVruT3KpW7pqdSmyQH0adhuV5tczJiCLQpCct2sJbq4v5Maea6EAT6VEB3Pn+Jm/2/q/zMvl+RyWT08L5eGMZCgrXTkpCr9F4k0Z72ZxuEFDZ0M7fv93Fg6cN5s+fd/ZmuuO9Tbx81WhOHRKN2aDjD2dmYLW7WFdUT5CfnkfOyfQ+cDVa7bQ7XERaTPsdTpAeHcjE5FBWFdR7t913ajoJh/FQsV+O7r2hcLs6J6krWaP+nTAepj+gjkXeq3YXfPN7uOR9MJ0AqwFJkrRfCaH+PHRGBjdOS8bfoM7hdqyU1rdRb7Vx56xUtpc1szS3mheW5nPa0BiGxQeh1QhOzYxmSGwgjVYHUYFGIizqkIR/XzaS8sZ2Wm1OWtqdhPgbuOeUNOI8vXBWFdQyd0g0FpOOlIgAxiWFsrawnpggE9PTI3yGFzx54XD+8Mk2b88mo07Di5ePwmp3MTEljKZ2BwFGHUnhZu8kqXqN4MGPt3HLjBSfFXSufX0dC26awITkMMICjPz7kpHc/+FWcipbiLQYefLC4aREqD266lptOFwKUYH7n/B6aFwQKRFm8rus7POHMzMIO4y59PbLYe2+zd4Cek8DSLVn/qvkmWBvh0VXde5XslptbDjjKdAeu98ZSZL6QPggOOtfMOtPYAoEw6E3kh6poro2/Axa7pyVyprCetYW1vPoV9lMSgkjOSIAP72O+WPimZAcSmuHk9gQP+8qnW9cO46q5g5abU6qmjoYGhfEvKw44oL96HC42F7WzJTUMAKMOmISTMQH+1Ha2E5mbCADQ/15xrN4gkGr4dHzhvK7j7Z6G8OD/fU8ecFwPtlUxpDYQJrbnQT764kKNOJwKTjanbQ7XDz/Uz5nDIvmtRVFAOTXtLKqoI6Pb5vEsLhgBoaZefmqMdy3aAulDe0khvvz9IUjiAvx9Cht8fR+tRyg907SVHWkSZtnonCNDqbeB/pemKuwo6X7Nms9GD0NTC2eaVEyz1OHNH75m879dn4B8eNg8l1HXg6p18jEkXRgB6psjgK708XKvDreWVNMc7uTjBgLD54+mMcX59Bg9Z1PIyrI5B2bvFdDm4NXlhfw/to9CCG4YFQcgyItvLtmD6sL6xgcZWHOkCiGxAZi0Gm5c1YaU9MiqGuzUVBr5f656by7Zg9tNicVje1MGRTBE12WUL530Rbeum4cFqOOln2GEQQYdLywJJ+0yAA2lTR2+2xvrSxi9uAotBrBoCgLr10zhoqmDswGHXEhfjhcbpbkVPO3r7KpbOrg4rEJXDc5qcdkUITFyNMXZbG5tJHyRisZ0YGMiA/unRVzwlLVFoi2Lj2i4kZBjedhacAk9W8hOgNNV0XLwForE0eSdBLQaARRgd0nfj6aWjucfL+zmjdWFNPucDEuKZR7ThnEP77Ppandt4t+fIg/8ftMCVTTYuOpb3ZRUNuGAKanR5ASYeblXwrZVtbEmIEh3DYzhdTIACwmPY+fP4xXlxUSHmDgteVF3vNkxFj4cWe1z3A4m9PNTznVzM6I5K9dJg+fkhrG6UOjibAYWbqrhvHJofy403dIG8CPO6uYkKyuNjQsPpj3b5pAdbONYD89UUEm2mxOfthZxROLc2izOblhahIXj00gKrD7TX5CqD+vXTOWTXsaqW+zMzQuiBHxvbTMccRg9cGia0PD4LOg4Cf139HD1b+1eqjP7378rq9h5kMQENk75ZEkqf/S6dUG6WOortXG51vKeX1FIU63wikZUVw7OZHXVxTR2qWHjhCCgT30+K9q6eAPn26jpcOJw+nm3JFxxAabeGFJPgW1rcwYFMG1kxNJDDOj12l4+aoxvLgkjyGxgTz9XWfjwtRB4by9qthnvrpGq4OiujZCzQZvggngglFxjB0YwrT0CD7eWMbsjEg+31LetVg4XArbS5sZFhcMqCuGfnLbJOrbHIQHGNSGAWs9bP8Qfv67etD0B9WhZ/49zI8XmQHXfA2l69QGgdjREJt1+F94T2JHqtNYdF1sKfM82Pm5+u+gBPVvgxmKVnQ/PvtTmHALaOUqnP2FTBxJ/UpOZQv3fdiZld9Z0cIXW8o5NSOSpPDOit3pUrv+G/W+XfF/yqni3TWeJQkUhQ/WlzIg1J+tpY0oCuysbOG3H2zhyzunEB5gpN3h4i9f7KC2VX3Y0GkEvz9jMK8tLyTYX8/awnr29e2OCh48YzAPf7bDu+rC2cNj8DNoabM7sdpdPa56E2o20LUDkcWzcs9eO8qauP7Ndd4eT6+vKEJR4I9nZqDrYXWEuBC/zlaFI2GtUxNA/mFqq0PIQLjiY3VYWulaSJyqDilY+rgaUIbM6/IhekgsRmSo45UlSZKOgq1ljTz2dWdCf21hPeEBBsYnhfgM5XI43SgoGHSdcUJRFL7fUcnoxFA0GoFBpyHCYqKhzc728iYA1hc38MdPtvPJbZOxmPS02ZxsL2/kivEDfeYd8jfoaLV1nyC8wWrn001lPtuW59XxwmUjCTDquPr1dYxPCsXcQ5zYO0fTXiH+Bm8LOMDmPY3cvWCz9/Wz3+/GYtJz7eSkHr+rgWHmHh+KDltLNXQ0qokev2CIGgJXfqbGhdpdkDZXvfnP/gwGnQ5J0zuPDU3pfr74sZ2tzpIkSb1sbWE9L3cZZvx9dhXXTEpkzMBgn3tnu9OFQKDvMoTX5nDx8cYypg+KZHNJI8H+enQaDQ1WB/k1rQAs2VVDq81FVkIIep2G5g4HFU3tTEwJ85l3yGzQ0WrrPhl4S4eTL7dW+Gz7eFMZr109lg6Hk2e+a2RgmBmzUed9RtnLZPB9JoiwmLw9agF13qKv7+98/fV96v195nk9f1kR6eqfI9Vcrk58bokBY4CagLriY3Wl7tYqGHKOOkl2czmMuQ4GTOg8Nn6smuzqKmmaTBr1MzJxJPUrxXVWn6w8wJbSJn53+mDSoywoisKG4gZeXV5IRVM7V05MZGZ6BKGeibP3rYQB1hU1MDsjkrQoCzanG6NOQ2VTB8kRAazMr6Olw4nZoKXN7sLpVvhmeyVJ4QGkRlp8VmrTCLh5WgpGvYaNxQ08ft4wXIqbmhY7O8qbeW/NHuaNiOPTzWUMirJ4xyyDmpC6YFQ89W123ArkVbfgciukRVm8rfW7q1u7TXK3cF0JN01LPvhEptZ6dXxw/k9q60HKTLXn0MGUrIPP74Saner+574ELhs0V8DU30JrjdoKYQqB05+Eyh1g7zJEIXo4jLke1ntWWDOY4cxnwT/04NeWJEn6FXZXtXbbtnx3LW9eN44BYWbsThdrCut5ZVkB7XY3109NYnJqOAFGHU3tDnQ6DX/5vLM30FdbK3jywuHMGhxJVkKwN06UN1mJCjLx8cYy8qrbWLKrhlEDQti4R500dWtpI785ZRAr8nxXHD0tM5p7Fm7uVsayxg7aOhyMTAhmXVE9fzgzgzUF6rEXjIonPtSPEfHBNLbbabe5yKtpRa/VkBYZ4B1etiK/ey/Pd1bv4YJR8d2STt00V0DRcjVWxI1Wb8pDDjJRtaJAwVI1TjSVqHMdnvUPaG9QGxzm/E2dF6+hUG0wOOMpdThz16FsCWPVZNLeufPM4TDtAdAf255qkiSdPJbnda8r1xTW8c9LsggLMNJqc7Iir5ZXlxXiZ9Bww9RkxieFYtBpqW214afX+gxLNhu0/P3C4czOiGREfDB2lxuDVkNVcztGnYbnf8pjV1UrudUtxIf4Udqg9sb8ZXcNV4wfyPNLOifh1ggYFhdE0z4rkyoK5Fa1YDHpiA0y8X12FbfNSOHJb3dh1GmYPyaByEAjMUF+tNqc1LfZKaxpxd+oIy0qgGA/T5Jl07vdv5AtC/afOOqqoRgKfobyTZA4BRInq3PUHYjTrvYi/fpeNS6kzIZT/gotFeoQ5rP/BcUr1OeHoAQ4faTaw8jZpcfqoFPVMlZsUl+HpsCISw5eXumY6tPEkRDiNeAsoFpRlKF9WRapfwgL6J5ZjgkykRYZgEYj2FbayGX/W4PdpSZkNpds4dFzM7liQiIAGTGBrMz3vYkfPSAYvU7D37/pDAC3zUghNdJMeICB6yYnYXe5CQ8w8O6aPdS32ZmYHIZBJzhjeAzf7qjC7nJzxYSBfLujkoJateXgo41lXDlhICvza71zSPz3ytEY9Ro+3VTGw2cNobbVRovNSbjZyEOfbCcsQM85I+L421fqhK7J4WZevmo0qZGWHnspRQUZMenVlgW708Wmkka+31GF2ajllIwohsUHg9sN616FJY92Hhg+CK78VJ2AdH+aymDh5WorAKg9jja+qU6Evdfke2DXV+qymN4fyAiIG+k5JlSdOH3EJdDeqE54eAxXy5BOfDJOSPuKCeqecMiICWRQpDo8dtOeRp+l7NcW1fPylaM5NTMag1bD9zu6r3q2tbSJC0fF89jXOzlzeAwCKG1oJynMxuBoC5ePH4gQcN7ION5bs4dlebUkh5tJCPXjgbnpfL6lHK1GcPbwWKKDTAyPD2ZzlyHLgSYdjVY7//k5n/9dOZrPt1Tw9dYKHjtvGBaTnud/2u2dA2lmegSDYwL5j2ey1bGJITw7fwQJoWaie/jsCSF+3jjRZnOyvrieH7OriQn2Y9bgCNKjA9Ub9iWPwqZ31IM2vAbJs+DCVw+c6K/NhfcvURc/AAiKhyWPwe5v1ddCqHOXrHlJ7b261+CzO1uwA2PhnBfU4c5OK4SlyQlPpV4jY4TUk54WashKCCY1Qo0Tq/LruPntDd73ftldy4IbJzA+OQyNEHy00XfVsza7i6qmDmalR/DSz/mcMzIeh8tNUZ2VIJOeUzIiSY+2YDZo+dOZQ3h5WQGb9jSQHG5mSIyFO2amsHh7FUF+Os7JisNi0hIbZKK8qcN7jQGh/hTVtfHxpjKev3QkC9aVsKawnsfPH0aQn57HvtpJaaOabLl4bAIut5sPN6i9W88aHsPDZw8h0mJS69i8730/fNfGZGu9msjJ+9HT2DxbvXdvq4VPb1XfAzVOjLlenbz6QIn+qu3w4TV4g25IInxxF5RvVF9r9TDnEVj6mDqX0V5jrlFjCqjPD5d/oDZEuF1q/AiM3f81pT7R1z2O3gCeB97q43JI/cSQmEAuGZvAgnUlAOi1gsfPH+btgrm5pIlQs4Ezh8eg1wp+2FnNf5YWcMbQGEIDjIyIDyIu2I8yT8UaH+LHkNgg7nh/o891Xlyaz/D4IB76ZLs346/VCP5wRgYOp5swi4Flu2uJDjTy6HlDyatuZUCoP2+tKvY5zwfrS7h+SpJ3NYUd5U2szK9lfFIYP+ZUMSEpjDdXFXuXUC5rbGdobDAxQSYqmjooqG3jk03l3D83neHxQQyJCSS7Qu3lJAT86cwh3t5Uawrquer1zoeh//5SwKKbJzLMvwGWPe37RdbmQtWOAyeOGvd0Jo2iMmH8rVCTrS6FWbBU3b76RXViul+6nH/fCfNMgZAwbv/XkaQj8wYyTkhdDI8PZsagCJZ6VqY0G7T87rTBmE3qLc3ibZUkhpk5dUgULkVh8bZKXltRyIzBEeh1GpQeztnc4eC5n3bz8P+zd97RcVR3G36299Wq994ly5Z77w1j03snECB0Qu+EBEKANCCQAAkQescYDLbBxjbu3ZZt9d67tLvaXr4/rrTSWiYh+RIwZJ9zdPDOzs7MjsS9c3/lfU8p4I73hRMbwMlFcWgUMj4YdOd8TSHj0TMKuXR6KlKphKtf3YtMKmFOTjQ+v58/fFnBNXMyWJQfS6xRzfaaLnJjDVwyLY37V5bg98Oh5n7K2ywUJYWxsbyduDAtpW3DIqJflXeSH29Eo5Bhd3vZXdfL1qpuzp+iY0ZmJHFhKtr6hXObUibl+gVZgXa8dUfb+Pk7w8YML2yu5r2fTSfLVzccNBqiZoNoM0uZ/s03u7duOGiUPAXGnAHtR4WOXfNesVDY/iwUnS1cWIeQHyPArYsE3YxvPk+IEP8+rxCaI0Icw+ysKPLjjJS2iWfqKL2SS6alIZNKcHm9vLSlhoJ4I/Nyo7G5vHx6qIXPSlqZmhGJSiENSFGMpMvq4oujbdx5Uj53vH8Qh1sksa+YmUZlu5WvB6uconRK7jwpl5sWZuH1+rnqtb3oVXJmZUVhdXr41adHuWFBFlfMSmdjeSeHmvqYmBrOyUXx3DtotlDS3E+31UVWjJ49dT30292BoBGIjoTbluQEXn96qJXTixNZVKAWydwDr4NzsGtCZYSx54p/+3yw9xVY//DwF4vMEsnmvobhoNEQe1+CyVeKdcI30V09HDTKWigqlTThovK0swy8bjH/5J4sdIuGkB0zT+hjQrp3Jzjfa+DI7/dvlkgkad/nNYQ4sTBpldyzLJ8zJyTSZ3OTEqkNZJEBovVKTh+fwBs7GnB5hVhduEYRcB9LCFOztDAWg1qBRCIE6Oxub2BwH0mX1RVUJur1+dlQ1sHU9AhkUgmflbTi9cGpxQmYNAo8vtHHcHt9SAfPrVHIkEkkNPbYaexpIi/OwO66nkDQaIgjLf1kxehpHcwybK/uwuvNJjFcywuXTKSkpR+z3U1OrIHCBKEV5PJ4+fOm6qA2Pofbx8byToqKZcER/MAXGq29EYTGJNwTck8WGeePrhKfyVoEM26Ebc8MHneEMJMuSrQ4hAjxHRGaJ0IcS1yYmt+dO47ydgsDTg8ZUXoyY/SB9/MTDHh8Pv6+vQ6ZRML5U1LQKqRIkSCXSfnprPSgylSpBPLijHRbXTy/qSYQNAL4rKSNx84sYkdND819duxuL/sa+rG7PJw9UWRK7W4va4+0BT4jk0n57bpyxiaFcdq4RLqsTvY19GJ2eIg2qLC5vJS3Wyhvt7AgL+a4WnrNfXbuWJqDxemlrNXMoaZ+zp8CWTEG3rpqGoebzTjdXvLijRQmiMx6j9UZJLQK0GtzU9LcT1bMN8wHXs/xtw+hGaxGmvgT0Z72/pXi9ZgzhUD2gTdEpdFIvaKoHIgNFX6E+G4IzREhjkdqlI6XfzKZinYLbq+P7FhDQANPioTFBbEcaOznhc01GNRyLp2eRphGLIsjdCpuXJDFXR+UBI6nkkvRq+VMSovg8TVlQeuKl7bW8dtzxnKk1UzPgIuuARe9Njfv72nkxkU5eH1++u1uVpcIOQ2FTILX5+eR1aVMy4jgtOJEbC4P64624/b6yY830NBt50BjHwca+7h4WipflnaM+o4+n59bFmUjk0rYWdMzHFhKGAdXroPWQ+IRPm6sqCwCERza/ETwgbqrRLJZfpyqIr//n88TQ6Lbs24VVUbv/0RoE024VFQfVawRLXAjte8y5v1ndJVCfKd83xVH/xSJRHI1cDVASso/6cUP8aMgTKtgSnrkcd/z+Pz8ZdOw2N07uxu5Y0lOIDMwLiUcjx9e2VrLgMvLvJxoFFJJoMJnCLVCik4pG3X8ngEXs7KjyIzWo5RJueGt/QFxvUdPH0O4VhHk7nbquATKW81My4jgsulp3PvR8CTT0GNjxdh4vjhmsC9KDOOLEW46SwrjkA2KXydFaEk6joua1w821+iB2+b2QlgKjL8U9r0y/IYmfHiSGMI5AG0HoKtKRPTjxsKiX4LbKloPhqj6Ekwpg+WjEshaIspG9bGQMReicwgR4kQiNE/87xGpVzHjG2zlHW4frw+ZJAB/21LLb84swu31I5fBtMxIXr58Mq9sq0MmlTAjM5LXd9QzPy+G9/Y0jTpeffcAl05P4W9b6uiwOOk0O7hpUTbpUTruWpbLrz4tDex78bQU9tSKoNShpn4ONfVz3bxMtlZ1MT83hnMmJXHruwcC+1e0W1hSEBuoNB0iOVzLE2vLcbh9zMqK4rzJyYH30qP0pEfpORaPz4/D7R213e3xizaA1FlQv2XETcwWxgcjsfdBywHoqxdzQHSeWAz4vbD35eH9St6H2bcJXbuE8ZAxX1QmRWYJQwVTMiFCnEiE5on/PeLC1Mdt75VJJXRYnAHHsl6bm6fWV/LshRPw+fxIpRKWFsahU8l5Y0c94Tol41PCeX5TNedPSQnoF42kocfGDfOzeHJtOXa3l16biwdOKSQtSseVs9L525bawL63LMoJGCjsqOlhR43QvHtzRwMrxsazKD82aJ4oazUzLT2CtUeD26xlUgm/HUwWnFacQH7cCDfjmPzR6wAQY/nxEss+j3i+N6WK8X+IzIUQmRG8r7VDzBOWVohIh6hcmHil6GIY6ljwumD3X2HB/aK1ecxZIjEtkYj1R+pMUYka4gfFCR848vv9LwAvAEyaNOl4FeYh/kewOT18Xdk5avvqkjbm58UQoVehkEmZlhFJQpiaZ9ZXYnV5uH/lYa5fkMVr2+up6RogzqjmnpPz6LONrtJZlB9DjEGFUaNgcUEsn988m6p2C3q1gsIEI0VJYby2vZ7DLf2cXpzI8rHx+H1Q22WlssPKPcvyaOy1U9lhpbnXxrzcaEqa+1k7qKkxKdVEfoKRN3aJRc3cnGhyYsUCoHfAhc3tJcYgvsdIfD4/Z05I4kBjf2CbRAILcmNES8Cc20V/8sG3Ib4Ypl4zeqA//B58cvPw6+ylcMrTo9vcQAioFpwJRWeKRUFKqBUtxIlLaJ4IMUSPzTnKvhhgfVk7M7OiSI7QolXKmZ8XQ5JJza3vHeKRQc25g419TMuIGJXZ1asUPLOhmoumpvD85hompUeQEKZBq5Rz/uQUpqZFUtNlJVKvojDBSFW7FYO6lvoeGxdNTWFBnggYVbRb6bO5uPfkfDotTg429sGgbtL+xj72N/QBYlzvHnAGMtpbqrq4ZLrQBOq2OnF5fcQa1IFq1yHkMgnnT07mT19VB7ap5FIKE42gCYNTn4aDb0HZahHomXBpsOip2yEqTUfOCVOuhnn3wDuXjL7ZLQeg+GLhjhOTJ0RUQ4Q4QQnNEyGGqOse4OMDo+eJvfU9TEoNJzZMjUmrZMXYBJLDtdz5/iE+KxFVpfVdA+THGYLaiwGUMhkvba1lxbh43t/bRHK4VuiQAjctyGLF2HjquwdINGnJidUzLimMF7+uod/u5oqZ6czMimR+bjSHm83IJHDf8nx6bW62VXWTFqXjkmmpVHZYqOmyBfT2SpqHEw4fH2gZTjBY2kSlkDF+9JeXqWDM2XDo7eFtQ8lmYwJc+I5oZavdDPmnwtjzQDUiIGXvg7X3Qsl7w9sWPwKzboa/rxh9vr5GmHgFTL9BrEuyFv6jX02IE5wTPnAUIsQQVR1W4sNGu4slhmtQKYIDLUnhWhYXxnH1oPDdbz4vY/nYeC6YkoJBI2dHTTeHmvq5e1kem8o76BpwsrwogViDmgidig6Lg21V3Wws72BskonCRBMdFidPr6+kz+bmlHHxLCqIJSlcVAfFm9Q4vT7u/fAwnVYnxckmfn1GEdF6FZNTI8iPN+L3g0Iqweb0cOOCLCRI2N/QS2lrPzKplF9+coSmXjtnTUjimrkZQRbKVR0W1hxu4/YluawvbUetlLEoP2ZYTNyULNrLJv5EaBBJB6upPC6hd2TvhXX3B9+4yrUiqxA/bvTNTpwIc24T7WwhQoQI8QOhumOAzCgde+t7g7bHh2k4Js5CcqSO04oTqGi34PT4aOyx8/NFObSZHRxuNqOQSbhwaio7a7uxOj2YtAoeXJGPXiUnTKOgqdfG15VdbK/uYnpmFBMjtVR3WnliXTlKmYRzJiYxKyuKuMF5K9ao5pODrfx2bTlmh4f5udHcvSwPtULGkvxY5mRHkxqp5bOSVt7a1Rh0rR6Pj08PtvDrz0rpt7u5fGYaF09NJX6E4+bRFgu1XTaun5/FpooOovQqFuTGEDM0T0Rmwvz7hOmBQgvSwXnTbRc6FLZe2PL74Ju0+0WRSU6dHlytBMJKefr1ouooRIgQIX4gNPbYSI7QBnUiAIRpFKPWE2lRWublRlPVacXr83OkxcxDpxbw4Moj1PfY0Chk/HR2Op8fbqWp105urIEnzhqLSiYmnNouK1+VCR2jebkxJEdoONTczxNryog1qjl/cgqTUiOI1KuJ1KuJ0qt4e1cjf1xfgcsjJDlumJ+Fx+fnjPFJuLw+smP0/H17/ah5TuO1wO6PhQi1zwuzbxd6R7qo4Z2a94gxe9p1UPe1qEbNXDisLRSTD0sfE/pEqhGVrQ6zMDgY6AgOGoE4X/6pwnWzryH4vaQpMPac0bp3IX6QhAJHIb4b3A5h0XvwLfHAOvY8SJo0HOD4FrSZHUQZVEEuBHqVnFPHJaA9pu1MKpUwMNjaNSElnOLkMGq7bDz2eSmvXzmFw039KGVS8PvJjTUwQx9FpF7J9MwIZFL4y8Zq3tjZgNPjY+WBFt7Z3cCi/Bh21fVgtnvYU9/Lyv0t/PaccSSaNLSZHVzz2l6GtPQONPbxq9VHOb04kUc+Kw26titnpfPR/uaA9tFPZqZzxSu7A+12b+5qwO318egZYwKCp70DbrZVd7O3vpep6RE4PT4eXV3KpNRj3HBGDvI+Lxx+H1bdIFoNnCOyI/HFQqOi7FNImiwG+yH3A120mFBCQaMQIUJ8h1gdbnbW9rByfzPxJg2njI0PZGy/LfXdNmZkRbHmaBtmu5gDog0qZmZFBcSzh1ArZBhUcq6ak0G4Rkm4Vs4r22r56ex0ajsH8Pph3ZE2KtqthGsVpEZqsbm8TE2PxOr08ODHR9hQJqqTVh1sZV5uNOEaBUdbzFidHmRSKQqZlPxBgdPSNjN3fXAocP6vyjtZWhCLXCbF4fFhdXp4b08jKsXoeVGlkPHTV/cEXj/7VTU6pZzr5g875fTYnKwuacWgEjocvTYXD646wqzsKKKHdpJIgucJ1wDsfAHW/wLm3AH+EVp+GfMhfTbs/zukzwluYYjMFtbOoaBRiBAhvksGuqB2Exz+COLGQMFpx2/J+gfsqxe6QQcb+3B6xJiXEaVjXLJpVMV/mEaJWiHjxgVZhGsVaJRynttQzX3L8znU3I/X6+ej/c009drJidETF6bG5/MzKS2CdrODa1/fS1mbFYCVB1q4bHoqFe0WqjsHKGk2o1bIUMol5NiMpEfr2FPXy2/WlAXO//GBFlYUxdPUZ8fr99NldVLfbcPiCG43U8ok5DtLYPWtwxvX3Qf6aLHmGsLSBnv+NqhZOkkIW9duhpylw5VFUmnwPGHrga8eFa1nc+4IvpmFZ0BMAez6CxRfCHWbxf4AqTMgY04oaPQj4nsNHEkkkreAeUCURCJpAh7y+/1/+z6vKcR/iYZt8NoZw6/3/R1+sgaSJ3/rQySFa7jxrX28cMkkmnrtuLw+0qN0tPU72FnTw5wcORE6ZWD/OKOau07KZXddLxvLO1iYH8sZ44tZd7SdzBg9sUY1v1lTHtg/IUzNzMwoylvNROlVXDM3k4QwNXXdA2iUcmQSOHN8EqmRWg429bGhtIMvS9v54mg7V8/O4FgDBqvDy6aKrlHfY39DLzMzI1l7pJ3r5mXSbXWOcm/4cH8zNy3MJnlQ7yglUhtw2NlcKY6ZEqEh0TS6AitAdzV8eosIILUeFM45DdvFg37h6fDFg8P7Tv0ZzL5VlLBG54askkOcMITmif8dvjjazs/fHXYEe2NHPe9fO+O4tsrfRGqElp+8spvnLppAXfcAfj+kR2qp7baxq6aH6RmRGDSKwP6ReiVWl4cvjrbRN+BiUUEcOqWMcK2SJ9eWM+DyEq5VcMOCLO758DApERpmZ0dzqLk/EDQaYmN5J789ZywRehWTU8N5d28T9608DMDs7Cgun5EWtP8VM9N4a3cjB5tEC3KsUcXlM9Lw+8Fsd7OvoQ+tUsZDpxRQ1hasgQQiyXD+lOSA82Z6lB6pBCxOD1+Vi2ubnRVFrPEf2Ch3lougEcBApxAy7a0T+kbxY2H9L8V7u14QC4aYAjGHDLU1hAjxPROaI/6H8PtFG9WGX4nXZZ/AnpfhJ5+Plmf4BxQlhfHgxyU8f8lE6roGkMskpERoKW+3IJXApLQItMrhJXJKhAazw8P7e5uRSWBBfiwKuQSZRMKLW2twenzEh6m5YGoKt75zkPl50czLjWFbdVcgaDTE6zsbePLssRQlmZicFs5zG6u59V2RUDhjfCLT0oMTwjctyOKXq49S12UDICtGz0mFsYxLDuPt3Y1UtlsJ0yj40wXjUR28c/SX3fuqaE0bStQPGRcMdAnRaoDJV4uk8TfRdkgEjUCsKdRh4OiHxAlCUPurR8V7+/4OCx4AQ4JIPsfkh1zSfmR8365qF3yf5w/xHeH1wLZng7f5PFC66l8KHGXHGvjducXsre/l6Q1VzMuJor5bzxs763F7/eTF6XnolEIyo/XEGNWkRer49WelTM2IJMGkYVNFJ239Ds6emITV6eH5ESLbAC39DvY39rK9pod3dg+3CVw0NYWjLeZAwEYqgV+dNob4wXOUtlqOK0hqd3nIi9Oz9kjw9pxYA3NyorhtSQ5J4dpRiw+AaL0KzYisc3qUjr9dPom7PjhEY4+dokQjvz6jiCjDP4ji2zrBIyybqfpCtChowsWAf6wt886/gCEepl0bygyEOKEIzRP/G/TZXDy1vjJo24DLy/6G3n8pcFSQYOShUwr45GAL7+9r4vTiBPY39LHqYDM+P0xLj+DWJTlkxRiI0ClJi9Jx/8rDAcHTtUfa6LI6WV4Uz18umciu2h5sLi9Pr6+i3+6mpNnNwcY+mvtGi6MCNPbYeXtXAyq5NGhs/7qyi4mp4UQbVHRanGgUMtQKWSBoBNBudnK0xUxVh5XLZ6Rx6+IckiO0pERog+akIRJNGtQj5om8OAN/vmgi968ULdMzMiN54JQCdKp/8KhnHSG2euBNWPQQVKwV2nZ7Xhp+z+eBjY/BKX+EglP/+S8iRIjviNAc8T9EXyN8/bvgbdY26DjyLwWOJqSEc8P8bF7YXMP2mm4un5HGl6UdbCwXOqorxsZx+Yx0cmL1GDVKsmL0XPbSbn42L5OSpn4+PdSCxeFmZlYUL146iV11PfTZ3DyxphyX18faI+1cPLWP2q6BUef2+f3UdQ/wWUkrVoc7oG0H8NH+ZsanmFDJpTg9PhLC1LSbnYGgEQjZDlt2FO/treGB5flE6FWkRGiFdEZj+ugvG5UV3N2RMB5OeQa+eACc/VBwhnj2/0cdIJYR88Sel2D+vXDoHcheAptGOLS5BmDN3XD2y8JMJ8SPjlCrWojvAL946DyWb7B3bOmzU9pqxuXxkRNrCNgsK2RSVoxN4EO3cL2ZlBbJ27sbuG5eFl6/H4VMyicHW/H5/Vw/P4t+uxuDWkFVhzUwGVS0W4V7wYp8rM7R57c4vAw4PZxWnMBX5R2Y7R7e3NXAzQuzA4Ejnx8+2NeMXiWj0+qkMMHIztoezpmYxHt7xbVJJXDe5BTsHi+5sXrK20XGISlcQ4JJwy1vH+TTm2Yhl0mJ1CkpTDBypEVklCUSuHlR9rB+ESCRSJiRGcVH186k3+4mSq8kTKvkHxKWDIt/KRzSrB2iBSFjHqTMhDfOHL2/o1/YKoeyyCFChPiO8fnB6x+tV3tsJecQDd0DlA2Kk+bFGUgZ1ITTqeScNSGJdrMDmURCWqSO1SWt3LwwG7fPj1wqYX1pBx/vb+bmxTl0WJzMzIri85I2ytvF8So7rOxv6ONn8zL401dVHHtZZrsbr8/P2EQjh0aIk45NDKO+20ZqpC5wrJFsKu/kwinJ7KrrxevzHTf4VNZmYVZ2JJWdVh5fW84nN8xCIpGQHK4hKVwTcPNRyCRcPjMtKCuukElZOiaOcSlhDDi9xBnUo9rzRmFKFXoWhjgxT+CHgtOFzt32P43e39YDTmtwG0OIECFCfCf4g9tph/AdZxtCH7Sy3YpSLiU/3kjCYJV+uE7J2ZOS2VnXg1GtQC6VYra7+fniHNxecaxtVZ18ebSd6xZk0WZ2cM6kZP72dS2dVpGQrWi3UtluZemYWP60oWrUufvsbsK1ylGuzicVxrGzpoe8OAP7G/tGfe5wUz/Li+JoMzsxquVUHGcuqekcYHF+LF+Vd3KkxcxbV08TbyRNEQli+6D2kVIvtIdGotLBxEshc9AJMyxJaKP+IyKzYNmToI0YXE/4YdJPhaPaxt+M3t86OiEe4sdBKHAU4r+PTCEENGs3Dm+TSKFwdNayrmuAa17bg9nh4cwJSZS1WZibE82E1PDAPuNTw4kPUyGVwMVTU/ndF+W4vX4kErhqVgbhOgW763oYl2xiSnoEf/wyOIvdaXXSY3Fy9sQkXtlWF9iulEmJD1NR2mrB6/Nx+Yw0Djb2s6miE98xKwezw01cmIqV+1u4Zm4mpa1mrp+XSWGCEakExiSEsfZoO2/vbuChUwrpsroI08hRK2Q09dqYlhFBW7+DnFgxcYxPCWdpYRwurw+NQsbK/U0syo8h2hDcYhBlUP3jKqMh7H2iVU0iE05qjsGsti4KLlkFk386XFoKIJWLAJM67J8fO0SIECH+w0TolNw4P4s7PygJbFMrpIxPMY3at7zNzCUv7cKgkrN8bDxlbWYW5MUyJlGMX1KphIX5saw60ILN5WVRfixPra/E5we5VMIdS3Mx290caTYToVOSGK7hg33Nwedot9A74GJxfizrRlggGzVyDBoFz2yo4sKpKUzPjGJHTTdFiWFMy4zkxrf2Y1DJmZUdxVdlHeTEGrA6PTT12pmYGk6sUYXT7WN8iok52VGsPtSKZzA6NjktnIumpmLSKugwO0mN0NJpdZIYruHjgy2cXBSPTinD6/ejkst4f08jC/NiAlp4Q8QZ/8kiYAhrJ/TUiGzFyp8NV6hGZAlnnbEXwIER1alKPRiThE5hiBAhQnzXhCXDjJtg84gqF20ExBWO2vVgYx8X/XUnGdE6FuTFUNluYUF+LDmxQsdHIZNyybQ0OvqduDwecuMM/OELYW2vVkh56JRCPt7fTEWbBZ1SgUYpDQSNhthY0cmyojgK4g0cbR0O8KREaPD7/fx5YxXXzcukvN1KSVMfk9IiKEwwcOu7h0iP0jExNZyqDivZMQa6rE46LE5y4wzY3R7qum1MSg3n9PFG9owQwZ6fG8O5k5JQKaS09js40NhP74CLcIUPtj4FU64Sayy/X/y3Yu3xncxMyd/unlvahHmCxwEfXjUcuEuZAac/J3SM6rcN729M+PbHDvGDIxQ4CvHdkDYLLvpAOLQotDD5SiHKdgzba7oZcHm5eFoqf9pQhd3t5W9bavnjecUsKogFRNvW61dOo7HXxk1v7cftFQ/dfj+8uKWGZy8cj9nuobZzgAkp4cil |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It is not rendered correctly in the output.
This PR adds a notebook that explains the properties of different class assignment objectives available for the machine learning data frame analytics classification jobs and gives pointers on when to choose which objective.
It intends to be linked in the "Concepts" section of the documentation and provide users with more insights than it is possible in the scope of "Concepts".
The rendered version of the jupyter notebook can be found here.
Closes #356.