Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions docs/reference/ml/anomaly-detection/apis/get-ml-info.asciidoc
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,8 @@ privileges. See <<security-privileges>>, <<built-in-roles>> and
This endpoint is designed to be used by a user interface that needs to fully
understand machine learning configurations where some options are not specified,
meaning that the defaults should be used. This endpoint may be used to find out
what those defaults are.
what those defaults are. It also provides information about the maximum size
of {ml} jobs that could run in the current cluster configuration.

[[get-ml-info-example]]
== {api-examples-title}
Expand Down Expand Up @@ -115,11 +116,13 @@ This is a possible response:
"build_hash": "99a07c016d5a73"
},
"limits" : {
"effective_max_model_memory_limit": "28961mb"
"effective_max_model_memory_limit": "28961mb",
"total_ml_memory": "86883mb"
}
}
----
// TESTRESPONSE[s/"upgrade_mode": false/"upgrade_mode": $body.upgrade_mode/]
// TESTRESPONSE[s/"version": "7.0.0",/"version": "$body.native_code.version",/]
// TESTRESPONSE[s/"build_hash": "99a07c016d5a73"/"build_hash": "$body.native_code.build_hash"/]
// TESTRESPONSE[s/"effective_max_model_memory_limit": "28961mb"/"effective_max_model_memory_limit": "$body.limits.effective_max_model_memory_limit"/]
// TESTRESPONSE[s/"total_ml_memory": "86883mb"/"total_ml_memory": "$body.limits.total_ml_memory"/]
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
import org.elasticsearch.cluster.service.ClusterService;
import org.elasticsearch.common.inject.Inject;
import org.elasticsearch.common.settings.ClusterSettings;
import org.elasticsearch.common.unit.ByteSizeUnit;
import org.elasticsearch.common.unit.ByteSizeValue;
import org.elasticsearch.common.xcontent.NamedXContentRegistry;
import org.elasticsearch.tasks.Task;
Expand Down Expand Up @@ -115,6 +116,23 @@ private Map<String, Object> datafeedsDefaults() {
return anomalyDetectorsDefaults;
}

static ByteSizeValue calculateTotalMlMemory(ClusterSettings clusterSettings, DiscoveryNodes nodes) {

long totalMlMemory = 0;

for (DiscoveryNode node : nodes) {
OptionalLong limit = NativeMemoryCalculator.allowedBytesForMl(node, clusterSettings);
if (limit.isEmpty()) {
continue;
}
totalMlMemory += limit.getAsLong();
}

// Round down to a whole number of megabytes, since we generally deal with model
// memory limits in whole megabytes
return ByteSizeValue.ofMb(ByteSizeUnit.BYTES.toMB(totalMlMemory));
}

static ByteSizeValue calculateEffectiveMaxModelMemoryLimit(ClusterSettings clusterSettings, DiscoveryNodes nodes) {

long maxMlMemory = -1;
Expand All @@ -135,7 +153,7 @@ static ByteSizeValue calculateEffectiveMaxModelMemoryLimit(ClusterSettings clust

maxMlMemory -= Math.max(Job.PROCESS_MEMORY_OVERHEAD.getBytes(), DataFrameAnalyticsConfig.PROCESS_MEMORY_OVERHEAD.getBytes());
maxMlMemory -= MachineLearning.NATIVE_EXECUTABLE_CODE_OVERHEAD.getBytes();
return ByteSizeValue.ofMb(Math.max(0L, maxMlMemory) / 1024 / 1024);
return ByteSizeValue.ofMb(ByteSizeUnit.BYTES.toMB(Math.max(0L, maxMlMemory)));
}

private Map<String, Object> limits() {
Expand All @@ -153,6 +171,8 @@ private Map<String, Object> limits() {
if (effectiveMaxModelMemoryLimit != null) {
limits.put("effective_max_model_memory_limit", effectiveMaxModelMemoryLimit.getStringRep());
}
limits.put("total_ml_memory",
calculateTotalMlMemory(clusterService.getClusterSettings(), clusterService.state().getNodes()).getStringRep());
return limits;
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@

import static org.elasticsearch.xpack.ml.MachineLearning.MAX_MACHINE_MEMORY_PERCENT;
import static org.elasticsearch.xpack.ml.MachineLearning.USE_AUTO_MACHINE_MEMORY_PERCENT;
import static org.hamcrest.Matchers.is;
import static org.hamcrest.Matchers.lessThanOrEqualTo;
import static org.hamcrest.Matchers.notNullValue;
import static org.hamcrest.Matchers.nullValue;
Expand All @@ -36,7 +37,8 @@ public void testCalculateEffectiveMaxModelMemoryLimit() {
ClusterSettings clusterSettings = new ClusterSettings(
Settings.builder().put(MAX_MACHINE_MEMORY_PERCENT.getKey(), mlMemoryPercent).build(),
Sets.newHashSet(MAX_MACHINE_MEMORY_PERCENT, USE_AUTO_MACHINE_MEMORY_PERCENT));
long highestMlMachineMemory = -1;
long highestMlMachineMemoryBytes = -1;
long totalMlMemoryBytes = 0;

DiscoveryNodes.Builder builder = DiscoveryNodes.builder();
for (int i = randomIntBetween(1, 10); i > 0; --i) {
Expand All @@ -49,7 +51,8 @@ public void testCalculateEffectiveMaxModelMemoryLimit() {
} else {
// ML node
long machineMemory = randomLongBetween(2000000000L, 100000000000L);
highestMlMachineMemory = Math.max(machineMemory, highestMlMachineMemory);
highestMlMachineMemoryBytes = Math.max(machineMemory, highestMlMachineMemoryBytes);
totalMlMemoryBytes += machineMemory * mlMemoryPercent / 100;
builder.add(new DiscoveryNode(nodeName, nodeId, ta,
Collections.singletonMap(MachineLearning.MACHINE_MEMORY_NODE_ATTR, String.valueOf(machineMemory)),
Collections.emptySet(), Version.CURRENT));
Expand All @@ -59,14 +62,19 @@ public void testCalculateEffectiveMaxModelMemoryLimit() {

ByteSizeValue effectiveMaxModelMemoryLimit = TransportMlInfoAction.calculateEffectiveMaxModelMemoryLimit(clusterSettings, nodes);

if (highestMlMachineMemory < 0) {
if (highestMlMachineMemoryBytes < 0) {
assertThat(effectiveMaxModelMemoryLimit, nullValue());
} else {
assertThat(effectiveMaxModelMemoryLimit, notNullValue());
assertThat(effectiveMaxModelMemoryLimit.getBytes()
+ Math.max(Job.PROCESS_MEMORY_OVERHEAD.getBytes(), DataFrameAnalyticsConfig.PROCESS_MEMORY_OVERHEAD.getBytes())
+ MachineLearning.NATIVE_EXECUTABLE_CODE_OVERHEAD.getBytes(),
lessThanOrEqualTo(highestMlMachineMemory * mlMemoryPercent / 100));
lessThanOrEqualTo(highestMlMachineMemoryBytes * mlMemoryPercent / 100));
}

ByteSizeValue totalMlMemory = TransportMlInfoAction.calculateTotalMlMemory(clusterSettings, nodes);

assertThat(totalMlMemory, notNullValue());
assertThat(totalMlMemory, is(ByteSizeValue.ofMb(totalMlMemoryBytes / (1024 * 1024))));
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,9 @@ teardown:
- match: { defaults.anomaly_detectors.daily_model_snapshot_retention_after_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- is_false: limits.max_model_memory_limit
# We cannot assert an exact value for the next one as it will vary depending on the test machine
# We cannot assert an exact value for the next two as they will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { limits.total_ml_memory: "/\\d+mb/" }
- match: { upgrade_mode: false }

- do:
Expand All @@ -36,8 +37,9 @@ teardown:
- match: { defaults.anomaly_detectors.daily_model_snapshot_retention_after_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits.max_model_memory_limit: "512mb" }
# We cannot assert an exact value for the next one as it will vary depending on the test machine
# We cannot assert an exact value for the next two as they will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { limits.total_ml_memory: "/\\d+mb/" }
- match: { upgrade_mode: false }

- do:
Expand All @@ -55,8 +57,9 @@ teardown:
- match: { defaults.anomaly_detectors.daily_model_snapshot_retention_after_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits.max_model_memory_limit: "6gb" }
# We cannot assert an exact value for the next one as it will vary depending on the test machine
# We cannot assert an exact value for the next two as they will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { limits.total_ml_memory: "/\\d+mb/" }
- match: { upgrade_mode: false }

- do:
Expand All @@ -74,8 +77,9 @@ teardown:
- match: { defaults.anomaly_detectors.daily_model_snapshot_retention_after_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits.max_model_memory_limit: "6gb" }
# We cannot assert an exact value for the next one as it will vary depending on the test machine
# We cannot assert an exact value for the next two as they will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { limits.total_ml_memory: "/\\d+mb/" }
- match: { upgrade_mode: false }

- do:
Expand All @@ -95,4 +99,5 @@ teardown:
- match: { limits.max_model_memory_limit: "1mb" }
# This time we can assert an exact value for the next one because the hard limit is so low
- match: { limits.effective_max_model_memory_limit: "1mb" }
- match: { limits.total_ml_memory: "/\\d+mb/" }
- match: { upgrade_mode: false }