Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -113,9 +113,12 @@ This is a possible response:
"version": "7.0.0",
"build_hash": "99a07c016d5a73"
},
"limits" : { }
"limits" : {
"effective_max_model_memory_limit": "28961mb"
}
}
----
// TESTRESPONSE[s/"upgrade_mode": false/"upgrade_mode": $body.upgrade_mode/]
// TESTRESPONSE[s/"version": "7.0.0",/"version": "$body.native_code.version",/]
// TESTRESPONSE[s/"build_hash": "99a07c016d5a73"/"build_hash": "$body.native_code.build_hash"/]
// TESTRESPONSE[s/"effective_max_model_memory_limit": "28961mb"/"effective_max_model_memory_limit": "$body.limits.effective_max_model_memory_limit"/]
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@
import org.elasticsearch.action.ActionListener;
import org.elasticsearch.action.support.ActionFilters;
import org.elasticsearch.action.support.HandledTransportAction;
import org.elasticsearch.cluster.node.DiscoveryNode;
import org.elasticsearch.cluster.node.DiscoveryNodes;
import org.elasticsearch.cluster.service.ClusterService;
import org.elasticsearch.common.inject.Inject;
import org.elasticsearch.common.unit.ByteSizeUnit;
Expand All @@ -21,9 +23,11 @@
import org.elasticsearch.xpack.core.ml.MlMetadata;
import org.elasticsearch.xpack.core.ml.action.MlInfoAction;
import org.elasticsearch.xpack.core.ml.datafeed.DatafeedConfig;
import org.elasticsearch.xpack.core.ml.dataframe.DataFrameAnalyticsConfig;
import org.elasticsearch.xpack.core.ml.job.config.AnalysisLimits;
import org.elasticsearch.xpack.core.ml.job.config.CategorizationAnalyzerConfig;
import org.elasticsearch.xpack.core.ml.job.config.Job;
import org.elasticsearch.xpack.ml.MachineLearning;
import org.elasticsearch.xpack.ml.process.MlControllerHolder;

import java.io.IOException;
Expand Down Expand Up @@ -106,11 +110,50 @@ private Map<String, Object> datafeedsDefaults() {
return anomalyDetectorsDefaults;
}

static ByteSizeValue calculateEffectiveMaxModelMemoryLimit(int maxMachineMemoryPercent, DiscoveryNodes nodes) {

long maxMlMemory = -1;

for (DiscoveryNode node : nodes) {

Map<String, String> nodeAttributes = node.getAttributes();
String machineMemoryStr = nodeAttributes.get(MachineLearning.MACHINE_MEMORY_NODE_ATTR);
if (machineMemoryStr == null) {
continue;
}
long machineMemory;
try {
machineMemory = Long.parseLong(machineMemoryStr);
} catch (NumberFormatException e) {
continue;
}
maxMlMemory = Math.max(maxMlMemory, machineMemory * maxMachineMemoryPercent / 100);
}

if (maxMlMemory <= 0) {
// This implies there are currently no ML nodes in the cluster, so we
// have no idea what the effective limit would be if one were added
return null;
}

maxMlMemory -= Math.max(Job.PROCESS_MEMORY_OVERHEAD.getBytes(), DataFrameAnalyticsConfig.PROCESS_MEMORY_OVERHEAD.getBytes());
maxMlMemory -= MachineLearning.NATIVE_EXECUTABLE_CODE_OVERHEAD.getBytes();
return new ByteSizeValue(Math.max(0L, maxMlMemory) / 1024 / 1024, ByteSizeUnit.MB);
}

private Map<String, Object> limits() {
Map<String, Object> limits = new HashMap<>();
ByteSizeValue effectiveMaxModelMemoryLimit = calculateEffectiveMaxModelMemoryLimit(
clusterService.getClusterSettings().get(MachineLearning.MAX_MACHINE_MEMORY_PERCENT), clusterService.state().getNodes());
ByteSizeValue maxModelMemoryLimit = clusterService.getClusterSettings().get(MachineLearningField.MAX_MODEL_MEMORY_LIMIT);
if (maxModelMemoryLimit != null && maxModelMemoryLimit.getBytes() > 0) {
limits.put("max_model_memory_limit", maxModelMemoryLimit);
limits.put("max_model_memory_limit", maxModelMemoryLimit.getStringRep());
if (effectiveMaxModelMemoryLimit == null || effectiveMaxModelMemoryLimit.compareTo(maxModelMemoryLimit) > 0) {
effectiveMaxModelMemoryLimit = maxModelMemoryLimit;
}
}
if (effectiveMaxModelMemoryLimit != null) {
limits.put("effective_max_model_memory_limit", effectiveMaxModelMemoryLimit.getStringRep());
}
return limits;
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/

package org.elasticsearch.xpack.ml.action;

import org.elasticsearch.Version;
import org.elasticsearch.cluster.node.DiscoveryNode;
import org.elasticsearch.cluster.node.DiscoveryNodes;
import org.elasticsearch.common.transport.TransportAddress;
import org.elasticsearch.common.unit.ByteSizeValue;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xpack.core.ml.dataframe.DataFrameAnalyticsConfig;
import org.elasticsearch.xpack.core.ml.job.config.Job;
import org.elasticsearch.xpack.ml.MachineLearning;

import java.net.InetAddress;
import java.util.Collections;

import static org.hamcrest.Matchers.lessThanOrEqualTo;
import static org.hamcrest.Matchers.notNullValue;
import static org.hamcrest.Matchers.nullValue;

public class TransportMlInfoActionTests extends ESTestCase {

public void testCalculateEffectiveMaxModelMemoryLimit() {

int mlMemoryPercent = randomIntBetween(5, 90);
long highestMlMachineMemory = -1;

DiscoveryNodes.Builder builder = DiscoveryNodes.builder();
for (int i = randomIntBetween(1, 10); i > 0; --i) {
String nodeName = "_node_name" + i;
String nodeId = "_node_id" + i;
TransportAddress ta = new TransportAddress(InetAddress.getLoopbackAddress(), 9300 + i);
if (randomBoolean()) {
// Not an ML node
builder.add(new DiscoveryNode(nodeName, nodeId, ta, Collections.emptyMap(), Collections.emptySet(), Version.CURRENT));
} else {
// ML node
long machineMemory = randomLongBetween(2000000000L, 100000000000L);
highestMlMachineMemory = Math.max(machineMemory, highestMlMachineMemory);
builder.add(new DiscoveryNode(nodeName, nodeId, ta,
Collections.singletonMap(MachineLearning.MACHINE_MEMORY_NODE_ATTR, String.valueOf(machineMemory)),
Collections.emptySet(), Version.CURRENT));
}
}
DiscoveryNodes nodes = builder.build();

ByteSizeValue effectiveMaxModelMemoryLimit =
TransportMlInfoAction.calculateEffectiveMaxModelMemoryLimit(mlMemoryPercent, nodes);

if (highestMlMachineMemory < 0) {
assertThat(effectiveMaxModelMemoryLimit, nullValue());
} else {
assertThat(effectiveMaxModelMemoryLimit, notNullValue());
assertThat(effectiveMaxModelMemoryLimit.getBytes()
+ Math.max(Job.PROCESS_MEMORY_OVERHEAD.getBytes(), DataFrameAnalyticsConfig.PROCESS_MEMORY_OVERHEAD.getBytes())
+ MachineLearning.NATIVE_EXECUTABLE_CODE_OVERHEAD.getBytes(),
lessThanOrEqualTo(highestMlMachineMemory * mlMemoryPercent / 100));
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,9 @@ teardown:
- match: { defaults.anomaly_detectors.categorization_examples_limit: 4 }
- match: { defaults.anomaly_detectors.model_snapshot_retention_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits: {} }
- is_false: limits.max_model_memory_limit
# We cannot assert an exact value for the next one as it will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { upgrade_mode: false }

- do:
Expand All @@ -32,6 +34,8 @@ teardown:
- match: { defaults.anomaly_detectors.model_snapshot_retention_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits.max_model_memory_limit: "512mb" }
# We cannot assert an exact value for the next one as it will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { upgrade_mode: false }

- do:
Expand All @@ -48,4 +52,42 @@ teardown:
- match: { defaults.anomaly_detectors.model_snapshot_retention_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits.max_model_memory_limit: "6gb" }
# We cannot assert an exact value for the next one as it will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { upgrade_mode: false }

- do:
cluster.put_settings:
body:
persistent:
xpack.ml.max_model_memory_limit: "6gb"

- do:
ml.info: {}
- match: { defaults.anomaly_detectors.categorization_analyzer.tokenizer: "ml_classic" }
- match: { defaults.anomaly_detectors.model_memory_limit: "1gb" }
- match: { defaults.anomaly_detectors.categorization_examples_limit: 4 }
- match: { defaults.anomaly_detectors.model_snapshot_retention_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits.max_model_memory_limit: "6gb" }
# We cannot assert an exact value for the next one as it will vary depending on the test machine
- match: { limits.effective_max_model_memory_limit: "/\\d+[kmg]?b/" }
- match: { upgrade_mode: false }

- do:
cluster.put_settings:
body:
persistent:
xpack.ml.max_model_memory_limit: "1mb"

- do:
ml.info: {}
- match: { defaults.anomaly_detectors.categorization_analyzer.tokenizer: "ml_classic" }
- match: { defaults.anomaly_detectors.model_memory_limit: "1mb" }
- match: { defaults.anomaly_detectors.categorization_examples_limit: 4 }
- match: { defaults.anomaly_detectors.model_snapshot_retention_days: 1 }
- match: { defaults.datafeeds.scroll_size: 1000 }
- match: { limits.max_model_memory_limit: "1mb" }
# This time we can assert an exact value for the next one because the hard limit is so low
- match: { limits.effective_max_model_memory_limit: "1mb" }
- match: { upgrade_mode: false }