-
Notifications
You must be signed in to change notification settings - Fork 25.6k
[ML][Inference] Adding memory and compute estimates to inference #48955
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[ML][Inference] Adding memory and compute estimates to inference #48955
Conversation
|
Pinging @elastic/ml-core (:ml) |
…ture/ml-inference-add-resource-info-to-models
| @Override | ||
| public long estimatedNumOperations() { | ||
| // Grabbing the features from the doc + the depth of the tree | ||
| return (long)Math.ceil(Math.log(nodes.size())) + featureNames.size(); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's probably worth making nodes.isEmpty() == false an invariant for this class. This line is assuming that nodes.size() > 0, as is line 168. But there are a couple of other places in the file where there are if (nodes.isEmpty()) { checks. Since it's clearly never intended to be empty it's probably best to validate that in the constructor and not bother to check anywhere else.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@droberts195 sounds good to me :D.
…ture/ml-inference-add-resource-info-to-models
|
run elasticsearch-ci/2 |
droberts195
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
* [ML][Inference] adds lazy model loader and inference (#47410) This adds a couple of things: - A model loader service that is accessible via transport calls. This service will load in models and cache them. They will stay loaded until a processor no longer references them - A Model class and its first sub-class LocalModel. Used to cache model information and run inference. - Transport action and handler for requests to infer against a local model Related Feature PRs: * [ML][Inference] Adjust inference configuration option API (#47812) * [ML][Inference] adds logistic_regression output aggregator (#48075) * [ML][Inference] Adding read/del trained models (#47882) * [ML][Inference] Adding inference ingest processor (#47859) * [ML][Inference] fixing classification inference for ensemble (#48463) * [ML][Inference] Adding model memory estimations (#48323) * [ML][Inference] adding more options to inference processor (#48545) * [ML][Inference] handle string values better in feature extraction (#48584) * [ML][Inference] Adding _stats endpoint for inference (#48492) * [ML][Inference] add inference processors and trained models to usage (#47869) * [ML][Inference] add new flag for optionally including model definition (#48718) * [ML][Inference] adding license checks (#49056) * [ML][Inference] Adding memory and compute estimates to inference (#48955)
* [ML][Inference] adds lazy model loader and inference (elastic#47410) This adds a couple of things: - A model loader service that is accessible via transport calls. This service will load in models and cache them. They will stay loaded until a processor no longer references them - A Model class and its first sub-class LocalModel. Used to cache model information and run inference. - Transport action and handler for requests to infer against a local model Related Feature PRs: * [ML][Inference] Adjust inference configuration option API (elastic#47812) * [ML][Inference] adds logistic_regression output aggregator (elastic#48075) * [ML][Inference] Adding read/del trained models (elastic#47882) * [ML][Inference] Adding inference ingest processor (elastic#47859) * [ML][Inference] fixing classification inference for ensemble (elastic#48463) * [ML][Inference] Adding model memory estimations (elastic#48323) * [ML][Inference] adding more options to inference processor (elastic#48545) * [ML][Inference] handle string values better in feature extraction (elastic#48584) * [ML][Inference] Adding _stats endpoint for inference (elastic#48492) * [ML][Inference] add inference processors and trained models to usage (elastic#47869) * [ML][Inference] add new flag for optionally including model definition (elastic#48718) * [ML][Inference] adding license checks (elastic#49056) * [ML][Inference] Adding memory and compute estimates to inference (elastic#48955)
* [ML] ML Model Inference Ingest Processor (#49052) * [ML][Inference] adds lazy model loader and inference (#47410) This adds a couple of things: - A model loader service that is accessible via transport calls. This service will load in models and cache them. They will stay loaded until a processor no longer references them - A Model class and its first sub-class LocalModel. Used to cache model information and run inference. - Transport action and handler for requests to infer against a local model Related Feature PRs: * [ML][Inference] Adjust inference configuration option API (#47812) * [ML][Inference] adds logistic_regression output aggregator (#48075) * [ML][Inference] Adding read/del trained models (#47882) * [ML][Inference] Adding inference ingest processor (#47859) * [ML][Inference] fixing classification inference for ensemble (#48463) * [ML][Inference] Adding model memory estimations (#48323) * [ML][Inference] adding more options to inference processor (#48545) * [ML][Inference] handle string values better in feature extraction (#48584) * [ML][Inference] Adding _stats endpoint for inference (#48492) * [ML][Inference] add inference processors and trained models to usage (#47869) * [ML][Inference] add new flag for optionally including model definition (#48718) * [ML][Inference] adding license checks (#49056) * [ML][Inference] Adding memory and compute estimates to inference (#48955) * fixing version of indexed docs for model inference
This adds two new fields to the trained model config object: