Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -122,27 +122,11 @@ public void onFetchPhase(SearchContext searchContext, long tookInNanos) {
});
}

public void clear() {
totalStats.clear();
synchronized (this) {
if (!groupsStats.isEmpty()) {
MapBuilder<String, StatsHolder> typesStatsBuilder = MapBuilder.newMapBuilder();
for (Map.Entry<String, StatsHolder> typeStats : groupsStats.entrySet()) {
if (typeStats.getValue().totalCurrent() > 0) {
typeStats.getValue().clear();
typesStatsBuilder.put(typeStats.getKey(), typeStats.getValue());
}
}
groupsStats = typesStatsBuilder.immutableMap();
}
}
}

private void computeStats(SearchContext searchContext, Consumer<StatsHolder> consumer) {
consumer.accept(totalStats);
if (searchContext.groupStats() != null) {
for (int i = 0; i < searchContext.groupStats().size(); i++) {
consumer.accept(groupStats(searchContext.groupStats().get(i)));
for (String group : searchContext.groupStats()) {
consumer.accept(groupStats(group));
}
}
}
Expand Down Expand Up @@ -184,40 +168,29 @@ public void onFreeScrollContext(SearchContext context) {
}

static final class StatsHolder {
public final MeanMetric queryMetric = new MeanMetric();
public final MeanMetric fetchMetric = new MeanMetric();
final MeanMetric queryMetric = new MeanMetric();
final MeanMetric fetchMetric = new MeanMetric();
/* We store scroll statistics in microseconds because with nanoseconds we run the risk of overflowing the total stats if there are
* many scrolls. For example, on a system with 2^24 scrolls that have been executed, each executing for 2^10 seconds, then using
* nanoseconds would require a numeric representation that can represent at least 2^24 * 2^10 * 10^9 > 2^24 * 2^10 * 2^29 = 2^63
* which exceeds the largest value that can be represented by a long. By using microseconds, we enable capturing one-thousand
* times as many scrolls (i.e., billions of scrolls which at one per second would take 32 years to occur), or scrolls that execute
* for one-thousand times as long (i.e., scrolls that execute for almost twelve days on average).
*/
public final MeanMetric scrollMetric = new MeanMetric();
public final MeanMetric suggestMetric = new MeanMetric();
public final CounterMetric queryCurrent = new CounterMetric();
public final CounterMetric fetchCurrent = new CounterMetric();
public final CounterMetric scrollCurrent = new CounterMetric();
public final CounterMetric suggestCurrent = new CounterMetric();

public SearchStats.Stats stats() {
final MeanMetric scrollMetric = new MeanMetric();
final MeanMetric suggestMetric = new MeanMetric();
final CounterMetric queryCurrent = new CounterMetric();
final CounterMetric fetchCurrent = new CounterMetric();
final CounterMetric scrollCurrent = new CounterMetric();
final CounterMetric suggestCurrent = new CounterMetric();

SearchStats.Stats stats() {
return new SearchStats.Stats(
queryMetric.count(), TimeUnit.NANOSECONDS.toMillis(queryMetric.sum()), queryCurrent.count(),
fetchMetric.count(), TimeUnit.NANOSECONDS.toMillis(fetchMetric.sum()), fetchCurrent.count(),
scrollMetric.count(), TimeUnit.MICROSECONDS.toMillis(scrollMetric.sum()), scrollCurrent.count(),
suggestMetric.count(), TimeUnit.NANOSECONDS.toMillis(suggestMetric.sum()), suggestCurrent.count()
);
}

public long totalCurrent() {
return queryCurrent.count() + fetchCurrent.count() + scrollCurrent.count() + suggestCurrent.count();
}

public void clear() {
queryMetric.clear();
fetchMetric.clear();
scrollMetric.clear();
suggestMetric.clear();
}
}
}