Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.function.Function;
import java.util.stream.Collectors;

Expand Down Expand Up @@ -99,4 +100,21 @@ protected long getSupersetSize() {
protected SignificanceHeuristic getSignificanceHeuristic() {
return significanceHeuristic;
}

@Override
protected boolean doEquals(Object obj) {
InternalMappedSignificantTerms<?, ?> that = (InternalMappedSignificantTerms<?, ?>) obj;
return super.doEquals(obj)
&& Objects.equals(format, that.format)
&& subsetSize == that.subsetSize
&& supersetSize == that.supersetSize
&& Objects.equals(significanceHeuristic, that.significanceHeuristic)
&& Objects.equals(buckets, that.buckets)
&& Objects.equals(bucketMap, that.bucketMap);
}

@Override
protected int doHashCode() {
return Objects.hash(super.doHashCode(), format, subsetSize, supersetSize, significanceHeuristic, buckets, bucketMap);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Objects;

import static java.util.Collections.unmodifiableList;

Expand Down Expand Up @@ -127,6 +128,27 @@ public B reduce(List<B> buckets, ReduceContext context) {
public double getSignificanceScore() {
return score;
}

@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}

Bucket<?> that = (Bucket<?>) o;
return bucketOrd == that.bucketOrd &&
Double.compare(that.score, score) == 0 &&
Objects.equals(aggregations, that.aggregations) &&
Objects.equals(format, that.format);
}

@Override
public int hashCode() {
return Objects.hash(getClass(), bucketOrd, aggregations, score, format);
}
}

protected final int requiredSize;
Expand Down Expand Up @@ -226,4 +248,16 @@ public InternalAggregation doReduce(List<InternalAggregation> aggregations, Redu
protected abstract long getSupersetSize();

protected abstract SignificanceHeuristic getSignificanceHeuristic();

@Override
protected int doHashCode() {
return Objects.hash(minDocCount, requiredSize);
}

@Override
protected boolean doEquals(Object obj) {
InternalSignificantTerms<?, ?> that = (InternalSignificantTerms<?, ?>) obj;
return Objects.equals(minDocCount, that.minDocCount)
&& Objects.equals(requiredSize, that.requiredSize);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.Objects;

/**
* Result of the running the significant terms aggregation on a numeric field.
Expand Down Expand Up @@ -109,6 +110,16 @@ public XContentBuilder toXContent(XContentBuilder builder, Params params) throws
builder.endObject();
return builder;
}

@Override
public boolean equals(Object obj) {
return super.equals(obj) && Objects.equals(term, ((Bucket) obj).term);
}

@Override
public int hashCode() {
return Objects.hash(super.hashCode(), term);
}
}

public SignificantLongTerms(String name, int requiredSize, long minDocCount, List<PipelineAggregator> pipelineAggregators,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.Objects;

/**
* Result of the running the significant terms aggregation on a String field.
Expand Down Expand Up @@ -111,6 +112,16 @@ public XContentBuilder toXContent(XContentBuilder builder, Params params) throws
builder.endObject();
return builder;
}

@Override
public boolean equals(Object obj) {
return super.equals(obj) && Objects.equals(termBytes, ((SignificantStringTerms.Bucket) obj).termBytes);
}

@Override
public int hashCode() {
return Objects.hash(super.hashCode(), termBytes);
}
}

public SignificantStringTerms(String name, int requiredSize, long minDocCount, List<PipelineAggregator> pipelineAggregators,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.elasticsearch.search.aggregations.bucket.significant;

import org.elasticsearch.search.aggregations.InternalAggregationTestCase;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.function.Function;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public abstract class InternalSignificantTermsTestCase extends InternalAggregationTestCase<InternalSignificantTerms<?, ?>> {

@Override
protected InternalSignificantTerms createUnmappedInstance(String name,
List<PipelineAggregator> pipelineAggregators,
Map<String, Object> metaData) {
InternalSignificantTerms<?, ?> testInstance = createTestInstance(name, pipelineAggregators, metaData);
return new UnmappedSignificantTerms(name, testInstance.requiredSize, testInstance.minDocCount, pipelineAggregators, metaData);
}

@Override
protected void assertReduced(InternalSignificantTerms<?, ?> reduced, List<InternalSignificantTerms<?, ?>> inputs) {
assertEquals(inputs.stream().mapToLong(InternalSignificantTerms::getSubsetSize).sum(), reduced.getSubsetSize());
assertEquals(inputs.stream().mapToLong(InternalSignificantTerms::getSupersetSize).sum(), reduced.getSupersetSize());

List<Function<SignificantTerms.Bucket, Long>> counts = Arrays.asList(
SignificantTerms.Bucket::getSubsetDf,
SignificantTerms.Bucket::getSupersetDf,
SignificantTerms.Bucket::getDocCount
);

for (Function<SignificantTerms.Bucket, Long> count : counts) {
Map<Object, Long> reducedCounts = toCounts(reduced.getBuckets().stream(), count);
Map<Object, Long> totalCounts = toCounts(inputs.stream().map(SignificantTerms::getBuckets).flatMap(List::stream), count);

Map<Object, Long> expectedReducedCounts = new HashMap<>(totalCounts);
expectedReducedCounts.keySet().retainAll(reducedCounts.keySet());
assertEquals(expectedReducedCounts, reducedCounts);
}
}

private static Map<Object, Long> toCounts(Stream<? extends SignificantTerms.Bucket> buckets,
Function<SignificantTerms.Bucket, Long> fn) {
return buckets.collect(Collectors.toMap(SignificantTerms.Bucket::getKey, fn, Long::sum));
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.elasticsearch.search.aggregations.bucket.significant;

import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.ChiSquare;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.GND;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.JLHScore;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.MutualInformation;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.SignificanceHeuristic;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import org.junit.Before;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

import static org.elasticsearch.search.aggregations.InternalAggregations.EMPTY;

public class SignificantLongTermsTests extends InternalSignificantTermsTestCase {

private SignificanceHeuristic significanceHeuristic;

@Before
public void setUpSignificanceHeuristic() {
significanceHeuristic = randomSignificanceHeuristic();
}

@Override
protected InternalSignificantTerms createTestInstance(String name,
List<PipelineAggregator> pipelineAggregators,
Map<String, Object> metaData) {
DocValueFormat format = DocValueFormat.RAW;
int requiredSize = randomIntBetween(1, 5);
int shardSize = requiredSize + 2;
final int numBuckets = randomInt(shardSize);

long globalSubsetSize = 0;
long globalSupersetSize = 0;

List<SignificantLongTerms.Bucket> buckets = new ArrayList<>(numBuckets);
Set<Long> terms = new HashSet<>();
for (int i = 0; i < numBuckets; ++i) {
long term = randomValueOtherThanMany(l -> terms.add(l) == false, random()::nextLong);

int subsetDf = randomIntBetween(1, 10);
int supersetDf = randomIntBetween(subsetDf, 20);
int supersetSize = randomIntBetween(supersetDf, 30);

globalSubsetSize += subsetDf;
globalSupersetSize += supersetSize;

buckets.add(new SignificantLongTerms.Bucket(subsetDf, subsetDf, supersetDf, supersetSize, term, EMPTY, format));
}
return new SignificantLongTerms(name, requiredSize, 1L, pipelineAggregators, metaData, format, globalSubsetSize,
globalSupersetSize, significanceHeuristic, buckets);
}

@Override
protected Writeable.Reader<InternalSignificantTerms<?, ?>> instanceReader() {
return SignificantLongTerms::new;
}

private static SignificanceHeuristic randomSignificanceHeuristic() {
return randomFrom(
new JLHScore(),
new MutualInformation(randomBoolean(), randomBoolean()),
new GND(randomBoolean()),
new ChiSquare(randomBoolean(), randomBoolean()));
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.elasticsearch.search.aggregations.bucket.significant;

import org.apache.lucene.util.BytesRef;
import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.ChiSquare;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.GND;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.JLHScore;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.MutualInformation;
import org.elasticsearch.search.aggregations.bucket.significant.heuristics.SignificanceHeuristic;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import org.junit.Before;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

import static org.elasticsearch.search.aggregations.InternalAggregations.EMPTY;

public class SignificantStringTermsTests extends InternalSignificantTermsTestCase {

private SignificanceHeuristic significanceHeuristic;

@Before
public void setUpSignificanceHeuristic() {
significanceHeuristic = randomSignificanceHeuristic();
}

@Override
protected InternalSignificantTerms createTestInstance(String name,
List<PipelineAggregator> pipelineAggregators,
Map<String, Object> metaData) {
DocValueFormat format = DocValueFormat.RAW;
int requiredSize = randomIntBetween(1, 5);
int shardSize = requiredSize + 2;
final int numBuckets = randomInt(shardSize);

long globalSubsetSize = 0;
long globalSupersetSize = 0;

List<SignificantStringTerms.Bucket> buckets = new ArrayList<>(numBuckets);
Set<BytesRef> terms = new HashSet<>();
for (int i = 0; i < numBuckets; ++i) {
BytesRef term = randomValueOtherThanMany(b -> terms.add(b) == false, () -> new BytesRef(randomAsciiOfLength(10)));

int subsetDf = randomIntBetween(1, 10);
int supersetDf = randomIntBetween(subsetDf, 20);
int supersetSize = randomIntBetween(supersetDf, 30);

globalSubsetSize += subsetDf;
globalSupersetSize += supersetSize;

buckets.add(new SignificantStringTerms.Bucket(term, subsetDf, subsetDf, supersetDf, supersetSize, EMPTY, format));
}
return new SignificantStringTerms(name, requiredSize, 1L, pipelineAggregators, metaData, format, globalSubsetSize,
globalSupersetSize, significanceHeuristic, buckets);
}

@Override
protected Writeable.Reader<InternalSignificantTerms<?, ?>> instanceReader() {
return SignificantStringTerms::new;
}

private static SignificanceHeuristic randomSignificanceHeuristic() {
return randomFrom(
new JLHScore(),
new MutualInformation(randomBoolean(), randomBoolean()),
new GND(randomBoolean()),
new ChiSquare(randomBoolean(), randomBoolean()));
}
}