|
29 | 29 | Converts the categorical value into an indicator array by building a dictionary of categories based on the data and using the id in the dictionary as the index in the array |
30 | 30 | </summary> |
31 | 31 | <remarks> |
32 | | - <para>The CategoricalOneHotVectorizer transform passes through a data set, operating on text columns, to |
| 32 | + <para> |
| 33 | + The CategoricalOneHotVectorizer transform passes through a data set, operating on text columns, to |
33 | 34 | build a dictionary of categories. |
34 | | - For each row, the entire text string appearing in the input column is defined as a category. |
35 | | - The output of this transform is an indicator vector.</para> |
| 35 | + For each row, the entire text string appearing in the input column is defined as a category.</para> |
| 36 | + <para>The output of this transform is an indicator vector.</para> |
36 | 37 | Each slot in this vector corresponds to a category in the dictionary, so its length is the size of the built dictionary. |
37 | 38 | <para>The CategoricalOneHotVectorizer can be applied to one or more columns, in which case it builds and uses a separate dictionary |
38 | 39 | for each column that it is applied to.</para> |
|
171 | 172 | This transform can transform either scalars or vectors (both fixed and variable size), |
172 | 173 | creating output columns that indicate, through the true/false booleans whether the row has a missing value. |
173 | 174 | </summary> |
174 | | - <seealso cref=" Microsoft.ML.Runtime.Data.MetadataUtils.Kinds.HasMissingValues"></seealso> |
| 175 | + <seealso cref="T:Microsoft.ML.Runtime.Data.MetadataUtils.Kinds.HasMissingValues"></seealso> |
175 | 176 | </member> |
176 | 177 | <example name="NAIndicator"> |
177 | 178 | <example> |
|
192 | 193 | with either the default value, user input, or imputed values (min/max/mean are currently supported). |
193 | 194 | Imputation modes are supported for vectors both by slot and across all slots. |
194 | 195 | </remarks> |
195 | | - <seealso cref=" Microsoft.ML.Runtime.Data.MetadataUtils.Kinds.HasMissingValues"></seealso> |
| 196 | + <seealso cref="T:Microsoft.ML.Runtime.Data.MetadataUtils.Kinds.HasMissingValues"></seealso> |
196 | 197 | </member> |
197 | 198 | <example name="NAReplace"> |
198 | 199 | <example> |
199 | 200 | <code language="csharp"> |
200 | 201 | pipeline.Add(new MissingValueSubstitutor("FeatureCol") |
201 | 202 | { |
202 | | - ReplacementKind = NAReplaceTransformReplacementKind.Mean |
| 203 | + ReplacementKind = NAReplaceTransformReplacementKind.Mean |
203 | 204 | }); |
204 | 205 | </code> |
205 | 206 | </example> |
|
221 | 222 | <code language="csharp"> |
222 | 223 | pipeline.Add(new LpNormalizer("FeatureCol") |
223 | 224 | { |
224 | | - NormKind = LpNormNormalizerTransformNormalizerKind.L1Norm |
| 225 | + NormKind = LpNormNormalizerTransformNormalizerKind.L1Norm |
225 | 226 | }); |
226 | 227 | </code> |
227 | 228 | </example> |
|
235 | 236 | </summary> |
236 | 237 | <remarks> |
237 | 238 | Scaling inputs to unit norms is a common operation for text classification or clustering. |
238 | | - For more information see: <a href="http://www.cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf"></a> |
| 239 | + For more information see: |
| 240 | + <a href="http://www.cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf">An Analysis of Single-Layer Networks in Unsupervised Feature Learning</a> |
239 | 241 | </remarks> |
240 | 242 | <seealso cref=" Microsoft.ML.Transforms.LpNormalizer"></seealso> |
241 | 243 | <example> |
242 | 244 | <code language="csharp"> |
243 | 245 | pipeline.Add(new GlobalContrastNormalizer("FeatureCol") |
244 | 246 | { |
245 | | - SubMean= false |
| 247 | + SubMean= false |
246 | 248 | }); |
247 | 249 | </code> |
248 | 250 | </example> |
|
334 | 336 | <code language="csharp"> |
335 | 337 | pipeline.Add(new CombinerByContiguousGroupId |
336 | 338 | { |
337 | | - GroupKey = new []{"Key1", "Key2" } |
| 339 | + GroupKey = new []{"Key1", "Key2" } |
338 | 340 | }); |
339 | 341 | </code> |
340 | 342 | </example> |
|
0 commit comments