In PyTorch:
import torch.nn.functional as F
source = torch.arange(10).unfold(0,3,1)
result = F.pad(input=source, pad=(0,0,1,0), mode='constant', value=0)
source, result
We can decide to pad start, end or both.

However in TorchSharp:
let torchAfterUnfoldT = (afterUnfoldT.move Backend.Torch).toTorch() //a tensor
let pad = torch.nn.ConstantPad1d(1L, 0.0)
let padded = pad.forward(torchAfterUnfoldT)
let pdata = padded.data<System.Single>().ToArray()
It always pads both start and end.

PS. with pad in DiffSharp, it pads start + end as well
afterUnfoldT.pad(seq [0; 0; 1])