-
Notifications
You must be signed in to change notification settings - Fork 214
Description
Hi. Currently I'm trying to implement some large language models (LLM) with TorchSharp and got a nice demo (here). But when moving forward to more features I found some lacking features required for LLMs:
Custom operators
LLMs heavily depend on custom operators like flash attention, RMS norm and GPTQ int4 matmul for faster inference speed and reduced model size with quantization.
PyTorch allows defining custom operators with native c++ and cuda source files in two ways: pybind11 and torch library. The latter one seems working fine with torch.jit.script and is potentially to be working with TorchSharp torch.jit.compile and torch.ops.xxx. But loading it requires calling a torch native method. Also, TorchSharp may have some specialized modules for custom ops.
BTW, openai/triton uses MLIR and LLVM to create custom ops, but is almost bound to python.
NCCL ops
I've also tried to implement a thread-based distributed approach with TorchSharp (at here). The required communication ops are: broadcast, scatter, gather and all-gather. I'm using the naive _copy operator to implement them, but are very slow. Is it possible to have these NCCL related ops provided?