@inproceedings{bader2024Sizey,
author={Bader, Jonathan and Skalski, Fabian and Lehmann, Fabian and Scheinert, Dominik and Will, Jonathan and Thamsen, Lauritz and Kao, Odej},
booktitle={2024 IEEE International Conference on Cluster Computing (CLUSTER)},
title={Sizey: Memory-Efficient Execution of Scientific Workflow Tasks},
year={2024},
}- Create a Python virtual environment and install the dependencies
- Run
python3 main.py filename alpha softmax error_metric seed [--use_online_grid]
Where:
filenamedescribes the workflow from the data folder. For instance./data/trace_methylseq.csvalphasets the alpha you want to execute Sizey with. It has to be between 0.0 and 1.0softmaxtoggles the softmax ensemble strategy. Set toTrueto use it, otherwiseFalsefor the argmax strategy.error_metricdefines the XYZ used for ABC. Currently, it is eithersmoothed_mapeorneg_mean_squared_errorwhereassmoothed_mapeshould be used and other error metrics might be experimental and change the impact on the RAQ score.seeddefines the seed for splitting up the initial data in training and test data and also defines the order of online task input.--use_online_grid(optional) toggles the online grid search.
Here is an example command: ./data/trace_methylseq.csv 0.0 True smoothed_mape 1996
- Check the results in terminal, and in results folder.