Skip to content

Conversation

@daisyden
Copy link
Owner

Fixes #ISSUE_NUMBER

desertfire and others added 30 commits October 4, 2024 00:35
This PR contains multiple fixes for issue pytorch#135279:

## First part:
Moves the GPU guard (`cudaSetDevice`) before the `currentStreamCaptureStatusMayInitCtx` call.
As its name suggests, it May Init Ctx.

## Second part:
Even with the above fix, additional contexts are still observed during Work object destruction, e.g.
```
work = dist.all_reduce(tensor, async_op=True)
time.sleep(5)  <-- no additional context yet
del work  <-- additional context shows up
```
### Debug process
Chasing it down to destruction of a `Future` object -- a member variable of `Work`.
Then further down to the following member of `Future`:
```
std::vector<c10::Event> events_;
```
When the `events_` are destroyed, we hit the road down to:
https://github.com/pytorch/pytorch/blob/1f3a79379012b408e0375e81fe9205dcba5e34ba/c10/cuda/impl/CUDAGuardImpl.h#L106-L121

When there is no "preset" CUDA context (**which is the case for python garbage collector**), line 112: `c10::cuda::GetDevice(&orig_device)` will set `orig_device` to 0. Then, at line 120, `c10::cuda::SetDevice(orig_device)` will "officially" set the context to device 0 --
**that's where rank 1, 2, ... can create extra context on device 0!**
### Solution
This PR adds an explicit destructor to `Future`. In this destructor, destroy each event with a device guard.

## Test
Added test_extra_cuda_context, implemented via
- `pynvml` (if available), or
- memory consumption check.

`python test/distributed/test_c10d_nccl.py -k test_extra_cuda_context`

Pull Request resolved: pytorch#135273
Approved by: https://github.com/fduwjj, https://github.com/wconstab, https://github.com/eqy
…torch#137135)

NumPy now throws an OverflowError when trying to create np.uint64(-1)

Pull Request resolved: pytorch#137135
Approved by: https://github.com/Skylion007
Summary: Link CPU pins function in MTIA hooks to the host allocator implementation

Test Plan:
signals
unit test in D63709424

Differential Revision: D63352770

Pull Request resolved: pytorch#137283
Approved by: https://github.com/egienvalue
…137257)

One-shot all-reduce did not have a barrier at the end. It was possible for a rank to write to its p2p buffer for the next collective before another rank finished reading it for the previous collective.

Also removing the fuse-input-copy optimization. The synchronization complexity probably outweighs the saving.

Pull Request resolved: pytorch#137257
Approved by: https://github.com/Chillee
)

This PR adds new meta functions for `lerp`, `addcmul`, and `addcdiv` (including their
respective inplace versions).

These functions only had refs implementations, which was being the root cause of a
significant overhead ([issue][1]) when running `AdamW` optimizer step on PyTorch/XLA
backend. Running the meta functions resulted in the following improvements:

- `lerp` calls: 1,550ms to 140ms (10x)
- `addcdiv` calls: 640ms to 350ms (1.8x)
- `addcmul` calls: 620ms to 300ms (2.05x)

[1]: https://github.com/pytorch/xla/issues/7923

Pull Request resolved: pytorch#136909
Approved by: https://github.com/jansel
We didn't support multiple levels of vmap. The main problem is, during
the batching rule, we need to exclude the vmap dispatch key
(FuncTorchBatched) like how our C++ batching rules do it.

Test Plan:
- new test
Pull Request resolved: pytorch#137306
Approved by: https://github.com/Chillee
…moved (pytorch#136835)

When the stub file `nn/parallel/distributed.pyi` was removed (pytorch#88701), some types that existed are no longer available. This pull request adds them back.

Just for reference, these types are used in pytorch-lightning's LightningCLI. Command line interfaces are created automatically, and having type hints make them nicer.

Pull Request resolved: pytorch#136835
Approved by: https://github.com/kwen2501
…ntion create_block_mask dynamic shapes (pytorch#137163)

Fixes #ISSUE_NUMBER

Pull Request resolved: pytorch#137163
Approved by: https://github.com/Chillee
Summary:
When we handle dynamic shapes markers like `Dim.AUTO, Dim.DYNAMIC`, we use dynamo decorators, attaching set attributes to the export input tensors, e.g. `x._dynamo_dynamic_indices = set()`.

I thought this was fine, since it's done all the time with torch.compile, but it breaks some PT2Inference tests, specifically because unpickling a set attribute isn't possible with the C++ torch::jit::pickle_load call.

We've agreed that the PT2Inference side will clone sample inputs & pickle the original inputs to be safe, but this still establishes a nice invariant that user-facing decorators are both ignored & cleaned out in the lifecycle of an export call.

Test Plan: test_export

Differential Revision: D63773534

Pull Request resolved: pytorch#137230
Approved by: https://github.com/avikchaudhuri
…torch#137236)

Summary:

Special autotuning configs like `num_warps` and `num_stages` can be passed to the kernel as parameters. The `config.all_kwargs()` call [here](https://github.com/triton-lang/triton/blob/762a7d197c4ea68e6e3a7895b5343a4afe894d0d/python/triton/runtime/autotuner.py#L106) in the Trtion code includes those special configs (names and values) into the potential arguments to the kernel. [Here](https://github.com/triton-lang/triton/blob/762a7d197c4ea68e6e3a7895b5343a4afe894d0d/python/triton/runtime/jit.py#L613) some of those may be included in actual kenrel arguments, given that their names are present among the kernel parameters.

This PR replicates this behavior in user-defined Triton kernel compilation in PT2. Resolves pytorch#136550.

Test Plan:

```
$ python test/inductor/test_triton_kernels.py -k test_triton_kernel_special_params
inductor []
inline_call []
stats [('calls_captured', 2), ('unique_graphs', 1)]
aot_autograd [('total', 1), ('ok', 1)]
.inductor []
inline_call []
stats [('calls_captured', 2), ('unique_graphs', 1)]
.inductor [('fxgraph_cache_bypass', 1), ('pattern_matcher_count', 1), ('pattern_matcher_nodes', 1), ('extern_calls', 1), ('possibly_missed_reinplacing_opportunities', 0), ('possibly_missed_reinplacing_bytes', 0)]
inline_call []
stats [('calls_captured', 2), ('unique_graphs', 1)]
aot_autograd [('total', 1), ('ok', 1)]
.inductor []
inline_call []
stats [('calls_captured', 2), ('unique_graphs', 1)]
aot_autograd [('total', 1), ('ok', 1)]
.inductor []
inline_call []
stats [('calls_captured', 2), ('unique_graphs', 1)]
.inductor [('benchmarking.TritonBenchmarker.benchmark_gpu', 2), ('fxgraph_cache_bypass', 1), ('pattern_matcher_count', 1), ('pattern_matcher_nodes', 1), ('extern_calls', 1), ('benchmarking.TritonBenchmarker.triton_do_bench', 1), ('possibly_missed_reinplacing_opportunities', 0), ('possibly_missed_reinplacing_bytes', 0)]
inline_call []
stats [('calls_captured', 2), ('unique_graphs', 1)]
aot_autograd [('total', 1), ('ok', 1)]
.
----------------------------------------------------------------------
Ran 6 tests in 6.283s

OK
```

Pull Request resolved: pytorch#137236
Approved by: https://github.com/zou3519
…Kernel (pytorch#136331)"

This reverts commit 592e3a3.

Reverted pytorch#136331 on behalf of https://github.com/albanD due to Breaks aarch64 builds, see link below ([comment](pytorch#136331 (comment)))
Summary: Fixes pytorch#136209. Because _scaled_mm has an out variant, the generated cpp fallback call should call _scaled_mm_out. The ABI-compatible mode needs more work.

Differential Revision: [D63757728](https://our.internmc.facebook.com/intern/diff/D63757728)
Pull Request resolved: pytorch#137008
Approved by: https://github.com/hl475
Summary: Similar to pytorch#137008, but for supporting _scaled_mm in the ABI-compatible mode.

Differential Revision: [D63757729](https://our.internmc.facebook.com/intern/diff/D63757729)
Pull Request resolved: pytorch#137132
Approved by: https://github.com/chenyang78
ghstack dependencies: pytorch#137008
raw_alloc is used by cudnn, miopen, thrust, and tunableop.  Without this PR, the env var for disabling the caching allocator will only partially work.

Pull Request resolved: pytorch#131114
Approved by: https://github.com/eqy, https://github.com/houseroad, https://github.com/albanD

Co-authored-by: Nichols A. Romero <[email protected]>
### Context
This PR allows CUTLASS kernels usage in AOTI. It does this by:
* For any CUTLASS kernels that win during autotuning, compile them as a .so & .o
* When creating the final model .so, link all the CUTLASS kernels .o files
* Make sure we codegen things correctly (argument dtypes and specify extern "C" linking for the CUTLASS kernel)

### Example
https://gist.github.com/ColinPeppler/e834fa2255c37e9444b6d540bf7bd04d#file-model-cpp-L548-L549

```
TORCH_LOGS="+output_code" python test/inductor/test_cutlass_backend.py -v -k test_max_autotune_cutlass_backend_regular_mm
```

Pull Request resolved: pytorch#134379
Approved by: https://github.com/tenpercent, https://github.com/chenyang78
Summary: hardcode "val" field for autocast (similar to set_grad_enabled), to bypass the verifier check.

Test Plan: CI

Differential Revision: D63345767

Pull Request resolved: pytorch#137287
Approved by: https://github.com/angelayi
…ytorch#137231)

Summary: We added the unit test for recent added pad_mm pattern in customized optimus D63040455, where it will resolve the long computation kernel issue for BF16 on A100.

Test Plan:
```
buck2 test mode/opt //caffe2/test/inductor:pad_mm -- test_pad_mm_bf16
```

Buck UI: https://www.internalfb.com/buck2/4dd4c90c-4a2a-4859-923c-a4008f78a1cd
Test UI: https://www.internalfb.com/intern/testinfra/testrun/9851624237127136
Network: Up: 100KiB  Down: 4.3GiB  (reSessionID-87f11454-d920-47af-9af5-39ca0572b7c6)
Jobs completed: 7079. Time elapsed: 3:34.3s.
Cache hits: 99%. Commands: 7061 (cached: 7024, remote: 19, local: 18)
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0

Differential Revision: D63794727

Pull Request resolved: pytorch#137231
Approved by: https://github.com/henrylhtsang
The red dotted line is 1.5

<img width="1607" alt="Screenshot 2024-09-24 at 11 50 41 AM" src="https://github.com/user-attachments/assets/719a9a86-89af-4c58-8723-80a28f9bb517">

expected taken from the average.
<img width="850" alt="Screenshot 2024-09-24 at 2 33 27 PM" src="https://github.com/user-attachments/assets/0f25e855-35ae-4031-86ef-1452ef6598de">

Pull Request resolved: pytorch#136573
Approved by: https://github.com/ezyang
janeyx99 and others added 18 commits October 10, 2024 01:23
…enchmarks (pytorch#137541)

Note that basic_modules_ListOfLinears_inductor_gpu_force_shape_pad is flay with 8% detected variance,
I set it up with 20% threshold (8*2)++
others are stable within +-1.5%

<img width="611" alt="Screenshot 2024-10-08 at 4 19 03 PM" src="https://github.com/user-attachments/assets/103c4bc7-6be8-41bf-ac31-4b8909fabfcf">

<img width="1581" alt="Screenshot 2024-10-08 at 4 18 56 PM" src="https://github.com/user-attachments/assets/56006f7a-e7de-4966-9a05-9263195adc68">

Pull Request resolved: pytorch#137541
Approved by: https://github.com/aorenste
…er (pytorch#137308)

Fixes pytorch#115725. Note that the github issue title is misleading. Read the comments to understand what the problem is really about.

The PR improves the documentation and CMake's behavior for ROCM builds.

- Documentation: There were two environment variables for ROCm builds that are now documented. `ROCM_PATH` and `PYTORCH_ROCM_ARCH`.
- CMake: Improved diagnostic messaging and error handling with respect to `ROCM_PATH`

Pull Request resolved: pytorch#137308
Approved by: https://github.com/pruthvistony, https://github.com/jithunnair-amd, https://github.com/jeffdaily
…ytorch#137654)

Fixed issue where nn.Transformer().generate_square_subsequent_mask() doesn't respect set_default_device() and set_default_dtype().

Fixes pytorch#137186

Pull Request resolved: pytorch#137654
Approved by: https://github.com/mikaylagawarecki
Summary:
Fix sequence number in execution trace dump for matching between collective/p2p op and wait in execution trace replay.

`ProcessGroupNCCL` has 2 sequence number counter, `seqCollective_` and `seqP2P_`.
https://github.com/pytorch/pytorch/blob/b18ba9419e7062acbd49bef5c388e1b1d6a170dc/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp#L1188-L1191
However, `WorkNCCL` only has one sequence number member `seq_`. https://github.com/pytorch/pytorch/blob/b18ba9419e7062acbd49bef5c388e1b1d6a170dc/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp#L387
We need to match collective and p2p with wait separately.
facebookresearch/param@29b5a46

Depend on: pytorch#135132

Test Plan: buck2 run mode/dev-nosan kineto/libkineto/fb/integration_tests:pytorch_execution_trace_integration_test

Differential Revision:

Pull Request resolved: pytorch#134578
Approved by: https://github.com/kwen2501, https://github.com/c-p-i-o
Summary: Remove some stale items

Test Plan: CI

Differential Revision: D64133246

Pull Request resolved: pytorch#137634
Approved by: https://github.com/hl475
Remove all the keyword static for constants of vec registers in exp_u20 implementation. With the bf16 input shape of BertLarge, the SDPA kernel improves from 5.1ms to 4.7ms on SPR 56 threads.

Pull Request resolved: pytorch#137571
Approved by: https://github.com/jgong5
…v2 (pytorch#137149)

during auto_functionalize_v2 if we encounter a view such that size() stride() and storage_offset() matches the base
we create a view that is regenerated by calling aten.alias instead of as_strided for better performance.

Pull Request resolved: pytorch#137149
Approved by: https://github.com/zou3519
Summary: Fixing a warning, so we can enable it globally.

Test Plan: Sandcastle-only, no runtime changes.

Differential Revision: D64122115

Pull Request resolved: pytorch#137619
Approved by: https://github.com/Skylion007
…uffer() to 0 (pytorch#137569)

It seems that there's a bug in `TensorMaker` - it would treat `storage_offset` as bytes when calculating the storage size, but as numel when setting the tensor `storage_offset`. This seems to be causing tensors returned by get_buffer() with non-0 offset to report wrong storage size.

Will look into the `TensorMaker` issue further. But for `get_buffer()`, it seems more natural to just incorporate the offset into the data pointer.

Pull Request resolved: pytorch#137569
Approved by: https://github.com/weifengpy
ghstack dependencies: pytorch#137567
**Summary**
Previously, we assumed the packed weight for (`MKL/MKLDNN`) linear operations was at `new_input_nodes[1]`. However, this is not the case for `MKL linear`, where `new_input_nodes[1]` contains the original weight instead of the packed weight. To generalize the code, in this PR, we identify nodes that are present in `input_nodes` but not in `new_input_nodes`—indicating they are no longer used by the GEMM template and can be considered candidates for deletion.

Pull Request resolved: pytorch#135101
Approved by: https://github.com/jgong5, https://github.com/jansel
Change `cumsum` to call its decomposition when `use_deterministic_algorithms(True)` and input is CUDA.

Fixes pytorch#89492
Fixes pytorch#75240

Pull Request resolved: pytorch#136224
Approved by: https://github.com/ezyang, https://github.com/justinchuby, https://github.com/eqy
Summary: Fixes a couple of problems: constants didn't have metadata before creating graph signatures, and graph signatures weren't updated when lifting constants.

Test Plan: fixed test

Differential Revision: D64081786

Pull Request resolved: pytorch#137547
Approved by: https://github.com/tugsbayasgalan
…rch#137606)

Some unit tests were failing relating to argmin_vec/argmax_vec due to a bug in GCC affecting versions <= 12 on aarch64 platforms with SVE

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=117001

Fixes pytorch#137597

Pull Request resolved: pytorch#137606
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <[email protected]>
Summary: We hipify NCCLUtils.h from nccl.h to rccl/rccl.h. This follows the format of the rocm rpm suite (the header is in include/rccl/rccl.h), however the source code is just src/rccl.h. Using the rccl/rccl.h will make us find the rpm's header but not the src code's header.

Test Plan:
buck run mode/opt-amd-gpu -c hpc_comms.use_rccl=develop -c fbcode.split-dwarf=True  --config rccl.build_rdma_core=true --config rccl.adhoc_brcm=true  //aps_models/ads/icvr:icvr_launcher -- mode=local_ctr_cvr_cmf_rep_1000x_v1_no_atom   data_loader.dataset.table_ds=[2024-09-04]   data_loader.dataset.batch_size=512  max_ind_range=10

w/o this diff, it'll show 2.18 nccl version

Differential Revision: D62371434

Pull Request resolved: pytorch#135472
Approved by: https://github.com/jeffdaily, https://github.com/cenzhaometa
…when unbacked (pytorch#137097)"

This reverts commit 4304c68.

Reverted pytorch#137097 on behalf of https://github.com/huydhn due to Sorry for reverting your change, it seems to increase the compilation time a lot causing some jobs to timeout ([comment](pytorch#137097 (comment)))
@daisyden daisyden closed this Oct 22, 2024
@daisyden daisyden deleted the daisyden/upstream branch October 22, 2024 02:57
daisyden pushed a commit that referenced this pull request Nov 15, 2024
…ytorch#139659)

### Motivation
Today, watchdog only reports that it found a collective timeout:
```
[rank1]:[E1104 14:02:18.767594328 ProcessGroupNCCL.cpp:688] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=1, OpType=ALLREDUCE, NumelIn=200, NumelOut=200, Timeout(ms)=5000) ran for 5096 milliseconds before timing out.
```
While this is nice, it is hard to associate the error with user's program or library stack.

### This PR
This PR gives watchdog the ability to report the call-time stack of the collective, so that it would be easier to track the error back to the program's behavior.

The call-time stack was recorded by Flight Recorder with minimal overhead (for details, please read this [doc](https://dev-discuss.pytorch.org/t/fast-combined-c-python-torchscript-inductor-tracebacks/1158) written by @zdevito ). In `ProcessGroupNCCL`, we are only tracking / reporting the python part so that it fits most PyTorch users.

### Demo
[stack_demo.py](https://gist.github.com/kwen2501/6758e18d305d67fc6f3f926217825c09).

```
TORCH_NCCL_TRACE_BUFFER_SIZE=100 torchrun --nproc-per-node 2 stack_demo.py
```
`TORCH_NCCL_TRACE_BUFFER_SIZE` is for turning on the Flight Recorder.

Output:
```
[rank0]:[E1104 14:19:27.591610653 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_reduce from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:2696
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 bar from /data/users/kw2501/sync_async/repro.py:15
#3 foo from /data/users/kw2501/sync_async/repro.py:24
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40

[rank1]:[E1104 14:19:27.771430164 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_gather_into_tensor from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:3630
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 baz from /data/users/kw2501/sync_async/repro.py:20
#3 foo from /data/users/kw2501/sync_async/repro.py:26
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40
```

From the log above, we can tell that `bar()` and `baz()` are the places where the two ranks divert.

Pull Request resolved: pytorch#139659
Approved by: https://github.com/wconstab, https://github.com/fduwjj
daisyden pushed a commit that referenced this pull request Nov 21, 2024
Summary:
OSS flight recorder does not work because we renamed `trace_dir` to `folder` in the internal version to reuse the loader.

Fixes item #2 in reported issue:
pytorch#140879

Test Plan:
BEFORE:
```
❯ python ./tools/flight_recorder/fr_trace.py ~/fr/140563/nccl_trace_logs --prefix nccl_trace_rank_container-node1_
tabulate is not installed. Proceeding without it.
Traceback (most recent call last):
  File "/data/users/cpio/fbsource/fbcode/caffe2/./tools/flight_recorder/fr_trace.py", line 52, in <module>
    main()
  File "/data/users/cpio/fbsource/fbcode/caffe2/./tools/flight_recorder/fr_trace.py", line 44, in main
    details, version = read_dir(args)
  File "/home/cpio/local/pytorch/tools/flight_recorder/components/loader.py", line 89, in read_dir
    assert len(details) > 0, f"no files loaded from {args.folder} with prefix {prefix}"
AttributeError: 'Namespace' object has no attribute 'folder'
```

AFTER:
```
python ./tools/flight_recorder/fr_trace.py ~/fr/140563/nccl_trace_logs --prefix nccl_trace_rank_container-node17_
tabulate is not installed. Proceeding without it.
Traceback (most recent call last):
  File "/data/users/cpio/fbsource/fbcode/caffe2/./tools/flight_recorder/fr_trace.py", line 52, in <module>
    main()
  File "/data/users/cpio/fbsource/fbcode/caffe2/./tools/flight_recorder/fr_trace.py", line 45, in main
    db = build_db(details, args, version)
  File "/home/cpio/local/fbsource/fbcode/caffe2/tools/flight_recorder/components/builder.py", line 446, in build_db
    check_no_missing_dump_files(entries, memberships)
  File "/home/cpio/local/fbsource/fbcode/caffe2/tools/flight_recorder/components/utils.py", line 267, in check_no_missing_dump_files
    dumps_ranks == all_ranks
AssertionError: Missing dump files from ranks {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119}
❯ git status
fatal: not a git repository (or any parent up to mount point /data/users/cpio)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
❯ python ./tools/flight_recorder/fr_trace.py ~/fr/140563/nccl_trace_logs --prefix nccl_trace_rank_container-node17_
tabulate is not installed. Proceeding without it.
Traceback (most recent call last):
  File "/data/users/cpio/fbsource/fbcode/caffe2/./tools/flight_recorder/fr_trace.py", line 52, in <module>
    main()
  File "/data/users/cpio/fbsource/fbcode/caffe2/./tools/flight_recorder/fr_trace.py", line 45, in main
    db = build_db(details, args, version)
  File "/home/cpio/local/fbsource/fbcode/caffe2/tools/flight_recorder/components/builder.py", line 446, in build_db
    check_no_missing_dump_files(entries, memberships)
  File "/home/cpio/local/fbsource/fbcode/caffe2/tools/flight_recorder/components/utils.py", line 267, in check_no_missing_dump_files
    dumps_ranks == all_ranks
AssertionError: Missing dump files from ranks {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119}
```

Differential Revision: D66117013

Pull Request resolved: pytorch#140973
Approved by: https://github.com/Skylion007, https://github.com/fduwjj
daisyden pushed a commit that referenced this pull request Nov 22, 2024
See pytorch#140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame #1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame #2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame #3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame #4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame #5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame #6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame #7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame #8: 0x0000000100fccbe4 Python`run_mod + 168
    frame #9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame #10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame #11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame #12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame #13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame #14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame #15: 0x0000000100ff1564 Python`pymain_main + 304
    frame #16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame #17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: pytorch#141296
Approved by: https://github.com/huydhn
daisyden pushed a commit that referenced this pull request Dec 25, 2024
…143550)

# Motivation
Fix pytorch#143543

# Solution
We should raise python exception instead of aborting...

# Additional Context
without this PR:
```python
>>> import torch
>>> torch.accelerator.current_stream(torch.accelerator.device_count())
terminate called after throwing an instance of 'c10::Error'
  what():  device is out of range, device is 2, total number of device is 2.
Exception raised from check_device_index at /home/dvrogozh/git/pytorch/pytorch/c10/xpu/XPUFunctions.h:36 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0xac (0x7f30707eb95c in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10.so)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xf3 (0x7f307078fc57 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10.so)
frame #2: <unknown function> + 0x19a3e (0x7f3070c2ba3e in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10_xpu.so)
frame #3: c10::xpu::getCurrentXPUStream(signed char) + 0x2f (0x7f3070c2c83f in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10_xpu.so)
frame #4: <unknown function> + 0x1ca35 (0x7f3070c2ea35 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libc10_xpu.so)
frame #5: <unknown function> + 0x653f15 (0x7f3083391f15 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libtorch_python.so)
frame #6: <unknown function> + 0x39e5f2 (0x7f30830dc5f2 in /home/dvrogozh/git/pytorch/pytorch/torch/lib/libtorch_python.so)
<omitting python frames>
frame pytorch#20: <unknown function> + 0x29d90 (0x7f308b19bd90 in /lib/x86_64-linux-gnu/libc.so.6)
frame pytorch#21: __libc_start_main + 0x80 (0x7f308b19be40 in /lib/x86_64-linux-gnu/libc.so.6)

Aborted (core dumped)
```
with this PR:
```python
>>> import torch
>>> torch.accelerator.current_stream(torch.accelerator.device_count())
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/pt-gpu/4T-4652/guangyey/stock-pytorch/torch/accelerator/__init__.py", line 123, in current_stream
    return torch._C._accelerator_getStream(device_index)
RuntimeError: The device index is out of range. It must be in [0, 2), but got 2.
```

Pull Request resolved: pytorch#143550
Approved by: https://github.com/EikanWang, https://github.com/dvrogozh, https://github.com/albanD
daisyden pushed a commit that referenced this pull request Mar 3, 2025
…pytorch#144120) (pytorch#146372)

Summary:

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg

Pull Request resolved: pytorch#146372
Approved by: https://github.com/jbschlosser
daisyden pushed a commit that referenced this pull request Apr 1, 2025
Summary:
fix another combo kernel logging error:

  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 2036, in _init
    self.create_combo_kernel_nodes(num_ck_nodes=None)
  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 3068, in create_combo_kernel_nodes
    log.debug("ComboKernels: Generating with num_ck_nodes = %d...", num_ck_nodes)
Message: 'ComboKernels: Generating with num_ck_nodes = %d...'
Arguments: (None,)

Test Plan:
Verified in test_combo_kernel.py

the logging error went away.

Differential Revision: D71655949

Pull Request resolved: pytorch#149772
Approved by: https://github.com/ColinPeppler, https://github.com/Skylion007
PenghuiCheng pushed a commit that referenced this pull request Jun 5, 2025
Use uint64_t index types to avoid
```
 torch_np/numpy_tests/core/test_einsum.py::TestEinsum::test_einsum_broadcast /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:132:24: runtime error: signed integer overflow: 9223365439786057728 + 13194139533312 cannot be represented in type 'long'
    #0 0x7f30d26166ba in std::enable_if<std::is_same_v<long, long>, void>::type at::native::cpublas::(anonymous namespace)::gemm_notrans_<long, long, long>(long, long, long, long, long const*, long, long const*, long, long, long*, long) /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:132:24
    #1 0x7f30d26166ba in void at::native::cpublas::(anonymous namespace)::gemm_core_<long, long, long>(at::native::TransposeType, at::native::TransposeType, long, long, long, long, long const*, long, long const*, long, long, long*, long) /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:451:12
    #2 0x7f30d25fba1b in at::native::cpublas::(anonymous namespace)::cpublas_gemm_impl(c10::ScalarType, at::native::TransposeType, at::native::TransposeType, long, long, long, c10::Scalar const&, void const*, long, void const*, long, c10::Scalar const&, void*, long)::$_2::operator()() const::'lambda2'()::operator()() const /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:485:3
    #3 0x7f30d25fba1b in at::native::cpublas::(anonymous namespace)::cpublas_gemm_impl(c10::ScalarType, at::native::TransposeType, at::native::TransposeType, long, long, long, c10::Scalar const&, void const*, long, void const*, long, c10::Scalar const&, void*, long)::$_2::operator()() const /var/lib/jenkins/workspace/aten/src/ATen/native/cpu/BlasKernel.cpp:485:3
```

Pull Request resolved: pytorch#154809
Approved by: https://github.com/soulitzer
daisyden pushed a commit that referenced this pull request Jun 10, 2025
Vibe-coded with Codex, after collecting a backtrace, see https://chatgpt.com/s/cd_68438be8a1248191adbfa0a5f000e60b

Even though, check for empty tensor list exists in `at::cat` crash might happens while resolving named dimension to position, by calling `dimname_to_position(tensors[0], dim)`, see backtrace below
```
(lldb) up
frame #1: 0x00000001101146dc libtorch_cpu.dylib`at::TensorBase::has_names(this=0x0000000000000000) const at TensorBase.h:559:10
   556 	  bool has_names() const {
   557 	    // If a user is using unnamed tensors, then we can short-circuit right here.
   558 	    // Otherwise, impl::has_names attempts to retrieve names.
-> 559 	    if (!impl_->has_named_tensor_meta()) {
   560 	      return false;
   561 	    }
   562 	    return impl::has_names(unsafeGetTensorImpl());
(lldb) up
frame #2: 0x00000001101144c4 libtorch_cpu.dylib`at::dimname_to_position(tensor=0x0000000000000000, dim=Dimname @ 0x000000016fdfe348) at NamedTensorUtils.cpp:23:3
   20  	int64_t dimname_to_position(const Tensor& tensor, Dimname dim) {
   21  	  TORCH_CHECK(dim.type() != NameType::WILDCARD,
   22  	      "Please look up dimensions by name, got: name = None.");
-> 23  	  TORCH_CHECK(tensor.has_names(),
   24  	      "Name ", dim, " not found in ", toDimnameRepr(tensor), ".");
   25  	  const auto names = tensor.names();
   26
```

TODOs:
 - May be move test from `test_tensor_creation.py` to OpInfo (not sure which one is more readable)
 - Replace  `TORCH_CHECK` with `TORCH_CHECK_VALUE` and adjust unit tests

Fixes pytorch#155306
Pull Request resolved: pytorch#155383
Approved by: https://github.com/cyyever, https://github.com/ezyang
ghstack dependencies: pytorch#155382
pytorchmergebot pushed a commit that referenced this pull request Jul 24, 2025
For tensor with non-zero offset, it must be multiplied by element size

Add regression test by creating Tensor in array of 6 elements with offset 3, which before the fix crashed with
```
C++ exception with description "setStorage: sizes [3, 3], strides [0, 1], storage offset 3, and itemsize 4 requiring a storage size of 24 are out of bounds for storage of size 15
Exception raised from checkInBoundsForStorage at /Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/Resize.h:123 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>) + 56 (0x104a9cd44 in libc10.dylib)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) + 120 (0x104a9a05c in libc10.dylib)
frame #2: void at::native::checkInBoundsForStorage<long long>(c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long, caffe2::TypeMeta const&, c10::Storage const&) + 656 (0x111dbd314 in libtorch_cpu.dylib)
frame #3: void at::native::setStrided<long long>(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long) + 152 (0x111dcd22c in libtorch_cpu.dylib)
frame #4: at::native::as_strided_tensorimpl(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) + 312 (0x111dccf98 in libtorch_cpu.dylib)
frame #5: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CPU__as_strided(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>>>, at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 104 (0x1129a1e94 in libtorch_cpu.dylib)
frame #6: at::_ops::as_strided::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 476 (0x112200ad0 in libtorch_cpu.dylib)
frame #7: at::Tensor::as_strided(c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) const + 236 (0x1115db098 in libtorch_cpu.dylib)
frame #8: at::native::expand(at::Tensor const&, c10::ArrayRef<long long>, bool) + 348 (0x111dcc0d4 in libtorch_cpu.dylib)
frame #9: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::ADInplaceOrView::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 116 (0x1157ac410 in libtorch_cpu.dylib)
frame #10: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::autograd::VariableType::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 992 (0x114e8b010 in libtorch_cpu.dylib)
frame #11: at::_ops::expand::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 316 (0x112743c90 in libtorch_cpu.dylib)
frame #12: at::expand_size(at::Tensor const&, c10::ArrayRef<long long>) + 164 (0x1047d82b4 in basic)
frame #13: BasicTest_TestForBlobResizeCPU_Test::TestBody() + 284 (0x1047d8048 in basic)
```
Pull Request resolved: pytorch#158690
Approved by: https://github.com/angelayi
daisyden pushed a commit that referenced this pull request Sep 19, 2025
)

Summary:
This diff fixes two things which come up when testing a tgif-published pt2 model remote net:
1) Updates isSameDevice to handle meta device to avoid this error:
```
what():  Unsupported device typemeta and meta
Exception raised from isSameDevice at fbcode/caffe2/torch/nativert/executor/PlacementUtils.cpp:20
```

2. Updates xl weight v2 loading logic in Weights.cpp to handle non-TBE xl-weights. Today, we enforce the device is the same for an old weight and new weight when replacing with ModelRunnerAdapter.setAttr(). However, the way we replace non-TBE xl weights is to find any weights on "meta" device and then replace them with their correct weight with real device from xl_weights folder. Therefore, the new weight and old weight will always have different devices and the device check is invalid. I don't think we've run into this so far bc non-TBE xl weights have not been thoroughly tested until now.

Test Plan:
Run MRS you model merge net, which uses non-TBE xl weights. Confirm that before change #1 we get error:
```
Unsupported device typemeta and meta
```
Then after change #1 and before change #2 we get:
```
what():  Mismatched device for merge.user_tower.linear.weight: meta vs cpu
Exception raised from validateValue at fbcode/caffe2/torch/nativert/executor/Weights.cpp:374
```
After change run is successful
Command:
```
MODEL_ENTITY_ID=921242082
SNAPSHOT_ID=1269
module_name=merge
SAMPLE_INPUT_DIR=/data/users/georgiaphillips/models/921242082/${SNAPSHOT_ID}/${module_name}_archive/package/data/sample_inputs
buck2 run mode/dev-nosan -c fbcode.nvcc_arch=h100,a100 -c fbcode.enable_gpu_sections=true caffe2/torch/fb/model_transform/fx2trt/packaging:load_net_predictor -- --loadMode=Benchmark --inputNetFile=/data/users/$USER/models/${MODEL_ENTITY_ID}/${SNAPSHOT_ID}/${MODEL_ENTITY_ID}_${SNAPSHOT_ID}.predictor.${module_name} --moduleName=${module_name} --submodToDevice="merge|cuda0"  --benchmarkEnableProfiling=false --disableStaticRuntime=true --doNotRandomizeSampleInputs=true --benchmarkDontRebatchSamples=true --pytorch_predictor_sigmoid_static_dispatch_enable=false --pytorch_predictor_sigmoid_graph_passes_enable=false --sampleInputFilePath=${SAMPLE_INPUT_DIR}/${module_name}.pt
```

Rollback Plan:

Differential Revision: D80713052

Pull Request resolved: pytorch#162842
Approved by: https://github.com/henryoier
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.