Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 16 additions & 16 deletions codeflash/optimization/function_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,8 +242,7 @@ def optimize_function(self) -> Result[BestOptimization, str]:
# request for new optimizations but don't block execution, check for completion later
# adding to control and experiment set but with same traceid
best_optimization = None

for _u, candidates in enumerate([optimizations_set.control, optimizations_set.experiment]):
for _u, (candidates, exp_type) in enumerate(zip([optimizations_set.control, optimizations_set.experiment],["EXP0","EXP1"])):
if candidates is None:
continue

Expand All @@ -253,8 +252,9 @@ def optimize_function(self) -> Result[BestOptimization, str]:
original_code_baseline=original_code_baseline,
original_helper_code=original_helper_code,
file_path_to_helper_classes=file_path_to_helper_classes,
exp_type=exp_type,
)
ph("cli-optimize-function-finished", {"function_trace_id": self.function_trace_id})
ph("cli-optimize-function-finished", {"function_trace_id": self.function_trace_id[:-4] + exp_type if self.experiment_id else self.function_trace_id})

generated_tests = remove_functions_from_generated_tests(
generated_tests=generated_tests, test_functions_to_remove=test_functions_to_remove
Expand Down Expand Up @@ -286,7 +286,7 @@ def optimize_function(self) -> Result[BestOptimization, str]:
benchmark_details=processed_benchmark_info.benchmark_details if processed_benchmark_info else None,
)

self.log_successful_optimization(explanation, generated_tests)
self.log_successful_optimization(explanation, generated_tests, exp_type)

self.replace_function_and_helpers_with_optimized_code(
code_context=code_context, optimized_code=best_optimization.candidate.source_code
Expand Down Expand Up @@ -324,7 +324,7 @@ def optimize_function(self) -> Result[BestOptimization, str]:
explanation=explanation,
existing_tests_source=existing_tests,
generated_original_test_source=generated_tests_str,
function_trace_id=self.function_trace_id,
function_trace_id=self.function_trace_id[:-4] + exp_type if self.experiment_id else self.function_trace_id,
coverage_message=coverage_message,
git_remote=self.args.git_remote,
)
Expand Down Expand Up @@ -361,6 +361,7 @@ def determine_best_candidate(
original_code_baseline: OriginalCodeBaseline,
original_helper_code: dict[Path, str],
file_path_to_helper_classes: dict[Path, set[str]],
exp_type: str,
) -> BestOptimization | None:
best_optimization: BestOptimization | None = None
best_runtime_until_now = original_code_baseline.runtime
Expand All @@ -377,27 +378,26 @@ def determine_best_candidate(
candidates = deque(candidates)
# Start a new thread for AI service request, start loop in main thread
# check if aiservice request is complete, when it is complete, append result to the candidates list
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
ai_service_client = self.aiservice_client if exp_type=="EXP0" else self.local_aiservice_client
future_line_profile_results = executor.submit(
self.aiservice_client.optimize_python_code_line_profiler,
ai_service_client.optimize_python_code_line_profiler,
source_code=code_context.read_writable_code,
dependency_code=code_context.read_only_context_code,
trace_id=self.function_trace_id,
trace_id=self.function_trace_id[:-4] + exp_type if self.experiment_id else self.function_trace_id,
line_profiler_results=original_code_baseline.line_profile_results["str_out"],
num_candidates=10,
experiment_metadata=None,
experiment_metadata=ExperimentMetadata(id=self.experiment_id, group= "control" if exp_type == "EXP0" else "experiment") if self.experiment_id else None,
)
try:
candidate_index = 0
done = False
original_len = len(candidates)
while candidates:
# for candidate_index, candidate in enumerate(candidates, start=1):
done = True if future_line_profile_results is None else future_line_profile_results.done()
if done and (future_line_profile_results is not None):
line_profile_results = future_line_profile_results.result()
candidates.extend(line_profile_results)
original_len += len(candidates)
original_len += len(line_profile_results)
logger.info(
f"Added results from line profiler to candidates, total candidates now: {original_len}"
)
Expand Down Expand Up @@ -519,16 +519,16 @@ def determine_best_candidate(
logger.exception(f"Optimization interrupted: {e}")
raise

self.aiservice_client.log_results(
function_trace_id=self.function_trace_id,
ai_service_client.log_results(
function_trace_id=self.function_trace_id[:-4] + exp_type if self.experiment_id else self.function_trace_id,
speedup_ratio=speedup_ratios,
original_runtime=original_code_baseline.runtime,
optimized_runtime=optimized_runtimes,
is_correct=is_correct,
)
return best_optimization

def log_successful_optimization(self, explanation: Explanation, generated_tests: GeneratedTestsList) -> None:
def log_successful_optimization(self, explanation: Explanation, generated_tests: GeneratedTestsList, exp_type: str) -> None:
explanation_panel = Panel(
f"⚡️ Optimization successful! 📄 {self.function_to_optimize.qualified_name} in {explanation.file_path}\n"
f"📈 {explanation.perf_improvement_line}\n"
Expand All @@ -555,7 +555,7 @@ def log_successful_optimization(self, explanation: Explanation, generated_tests:
ph(
"cli-optimize-success",
{
"function_trace_id": self.function_trace_id,
"function_trace_id": self.function_trace_id[:-4] + exp_type if self.experiment_id else self.function_trace_id,
"speedup_x": explanation.speedup_x,
"speedup_pct": explanation.speedup_pct,
"best_runtime": explanation.best_runtime_ns,
Expand Down
Loading