Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 29, 2025

📄 11% (0.11x) speedup for grey in src/bokeh/palettes.py

⏱️ Runtime : 1.53 milliseconds 1.38 milliseconds (best of 71 runs)

📝 Explanation and details

The optimized code replaces the expensive math.floor() calls in a generator expression with a single batch conversion using NumPy's astype(int).

Key optimizations:

  1. Eliminated repeated math.floor() calls: The original code called math.floor(i) for each element in the generator, which consumed 98.7% of execution time. The optimized version precomputes all indices at once using np.linspace().astype(int).

  2. Reduced function call overhead: Instead of calling math.floor() in a tight loop for each palette element, the optimization uses NumPy's vectorized integer conversion which is significantly faster.

  3. Split computation into explicit steps: The optimization separates index computation from palette lookup, making the bottleneck more apparent and allowing NumPy to handle the heavy lifting.

Performance characteristics:

  • Larger palettes see bigger gains: Test cases with n=256 show 23-28% speedup, while smaller palettes (n=2-10) show modest 5-10% slowdowns due to NumPy overhead
  • Sweet spot around n=100+: The optimization shines when the cost of NumPy setup is amortized over many elements
  • Maintains identical output: All edge cases and error handling remain unchanged

The 10% overall speedup comes from the optimization being most effective on larger palette requests, which tend to dominate the runtime profile in real-world usage scenarios.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 5 Passed
🌀 Generated Regression Tests 74 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
unit/bokeh/test_palettes.py::test_cmap_generator_function 27.0μs 17.0μs 59.2%✅
🌀 Generated Regression Tests and Runtime
import pytest  # used for our unit tests
from bokeh.palettes import grey

Greys256 = (
    "#000000", "#010101", "#020202", "#030303", "#040404", "#050505", "#060606", "#070707", "#080808", "#090909", "#0a0a0a", "#0b0b0b",
    "#0c0c0c", "#0d0d0d", "#0e0e0e", "#0f0f0f", "#101010", "#111111", "#121212", "#131313", "#141414", "#151515", "#161616", "#171717",
    "#181818", "#191919", "#1a1a1a", "#1b1b1b", "#1c1c1c", "#1d1d1d", "#1e1e1e", "#1f1f1f", "#202020", "#212121", "#222222", "#232323",
    "#242424", "#252525", "#262626", "#272727", "#282828", "#292929", "#2a2a2a", "#2b2b2b", "#2c2c2c", "#2d2d2d", "#2e2e2e", "#2f2f2f",
    "#303030", "#313131", "#323232", "#333333", "#343434", "#353535", "#363636", "#373737", "#383838", "#393939", "#3a3a3a", "#3b3b3b",
    "#3c3c3c", "#3d3d3d", "#3e3e3e", "#3f3f3f", "#404040", "#414141", "#424242", "#434343", "#444444", "#454545", "#464646", "#474747",
    "#484848", "#494949", "#4a4a4a", "#4b4b4b", "#4c4c4c", "#4d4d4d", "#4e4e4e", "#4f4f4f", "#505050", "#515151", "#525252", "#535353",
    "#545454", "#555555", "#565656", "#575757", "#585858", "#595959", "#5a5a5a", "#5b5b5b", "#5c5c5c", "#5d5d5d", "#5e5e5e", "#5f5f5f",
    "#606060", "#616161", "#626262", "#636363", "#646464", "#656565", "#666666", "#676767", "#686868", "#696969", "#6a6a6a", "#6b6b6b",
    "#6c6c6c", "#6d6d6d", "#6e6e6e", "#6f6f6f", "#707070", "#717171", "#727272", "#737373", "#747474", "#757575", "#767676", "#777777",
    "#787878", "#797979", "#7a7a7a", "#7b7b7b", "#7c7c7c", "#7d7d7d", "#7e7e7e", "#7f7f7f", "#808080", "#818181", "#828282", "#838383",
    "#848484", "#858585", "#868686", "#878787", "#888888", "#898989", "#8a8a8a", "#8b8b8b", "#8c8c8c", "#8d8d8d", "#8e8e8e", "#8f8f8f",
    "#909090", "#919191", "#929292", "#939393", "#949494", "#959595", "#969696", "#979797", "#989898", "#999999", "#9a9a9a", "#9b9b9b",
    "#9c9c9c", "#9d9d9d", "#9e9e9e", "#9f9f9f", "#a0a0a0", "#a1a1a1", "#a2a2a2", "#a3a3a3", "#a4a4a4", "#a5a5a5", "#a6a6a6", "#a7a7a7",
    "#a8a8a8", "#a9a9a9", "#aaaaaa", "#ababab", "#acacac", "#adadad", "#aeaeae", "#afafaf", "#b0b0b0", "#b1b1b1", "#b2b2b2", "#b3b3b3",
    "#b4b4b4", "#b5b5b5", "#b6b6b6", "#b7b7b7", "#b8b8b8", "#b9b9b9", "#bababa", "#bbbbbb", "#bcbcbc", "#bdbdbd", "#bebebe", "#bfbfbf",
    "#c0c0c0", "#c1c1c1", "#c2c2c2", "#c3c3c3", "#c4c4c4", "#c5c5c5", "#c6c6c6", "#c7c7c7", "#c8c8c8", "#c9c9c9", "#cacaca", "#cbcbcb",
    "#cccccc", "#cdcdcd", "#cecece", "#cfcfcf", "#d0d0d0", "#d1d1d1", "#d2d2d2", "#d3d3d3", "#d4d4d4", "#d5d5d5", "#d6d6d6", "#d7d7d7",
    "#d8d8d8", "#d9d9d9", "#dadada", "#dbdbdb", "#dcdcdc", "#dddddd", "#dedede", "#dfdfdf", "#e0e0e0", "#e1e1e1", "#e2e2e2", "#e3e3e3",
    "#e4e4e4", "#e5e5e5", "#e6e6e6", "#e7e7e7", "#e8e8e8", "#e9e9e9", "#eaeaea", "#ebebeb", "#ececec", "#ededed", "#eeeeee", "#efefef",
    "#f0f0f0", "#f1f1f1", "#f2f2f2", "#f3f3f3", "#f4f4f4", "#f5f5f5", "#f6f6f6", "#f7f7f7", "#f8f8f8", "#f9f9f9", "#fafafa", "#fbfbfb",
    "#fcfcfc", "#fdfdfd", "#fefefe", "#ffffff"
)
from bokeh.palettes import grey

# unit tests

# -------------------
# BASIC TEST CASES
# -------------------

def test_grey_basic_1():
    # Test for n=1: should return only black
    codeflash_output = grey(1) # 28.3μs -> 30.0μs (5.58% slower)

def test_grey_basic_2():
    # Test for n=2: should return black and white
    codeflash_output = grey(2) # 21.5μs -> 23.3μs (7.61% slower)

def test_grey_basic_3():
    # Test for n=3: should return black, mid-grey, white
    codeflash_output = grey(3) # 20.1μs -> 22.3μs (9.99% slower)

def test_grey_basic_6():
    # Test for n=6: documented example
    codeflash_output = grey(6) # 20.3μs -> 21.9μs (7.25% slower)

def test_grey_basic_10():
    # Test for n=10: evenly spaced greys
    expected = (
        "#000000", "#1c1c1c", "#383838", "#555555", "#717171",
        "#8e8e8e", "#aaaaaa", "#c7c7c7", "#e3e3e3", "#ffffff"
    )
    codeflash_output = grey(10) # 20.9μs -> 22.0μs (4.89% slower)

def test_grey_basic_256():
    # Test for n=256: should return the full Greys256 palette
    codeflash_output = grey(256) # 43.2μs -> 33.7μs (27.9% faster)

# -------------------
# EDGE TEST CASES
# -------------------

def test_grey_edge_zero():
    # Test for n=0: should return empty tuple
    codeflash_output = grey(0) # 16.7μs -> 18.7μs (10.3% slower)


def test_grey_edge_overflow():
    # Test for n > 256: should raise ValueError
    with pytest.raises(ValueError):
        grey(257) # 2.03μs -> 2.00μs (1.60% faster)

def test_grey_edge_type_float():
    # Test for n as float: should raise TypeError
    with pytest.raises(TypeError):
        grey(2.5) # 4.46μs -> 4.49μs (0.624% slower)

def test_grey_edge_type_string():
    # Test for n as string: should raise TypeError
    with pytest.raises(TypeError):
        grey("5") # 1.75μs -> 1.77μs (0.792% slower)

def test_grey_edge_type_none():
    # Test for n as None: should raise TypeError
    with pytest.raises(TypeError):
        grey(None) # 1.55μs -> 1.57μs (1.21% slower)

def test_grey_edge_type_list():
    # Test for n as list: should raise TypeError
    with pytest.raises(TypeError):
        grey([5]) # 1.54μs -> 1.61μs (4.46% slower)

def test_grey_edge_type_bool():
    # Test for n as bool: should treat True as 1, False as 0
    codeflash_output = grey(True) # 37.8μs -> 38.5μs (1.69% slower)
    codeflash_output = grey(False) # 9.45μs -> 10.0μs (5.55% slower)


def test_grey_edge_type_large_positive():
    # Test for n just below limit
    codeflash_output = len(grey(255)) # 60.8μs -> 51.2μs (18.8% faster)

# -------------------
# LARGE SCALE TEST CASES
# -------------------

def test_grey_large_scale_100():
    # Test for n=100: check length and endpoints
    codeflash_output = grey(100); result = codeflash_output # 33.2μs -> 31.1μs (6.72% faster)
    # Check middle value is a mid-grey
    mid = result[49]

def test_grey_large_scale_1000():
    # Test for n=1000: should raise ValueError (since palette only has 256 colors)
    with pytest.raises(ValueError):
        grey(1000) # 1.59μs -> 1.64μs (2.57% slower)

def test_grey_large_scale_255_unique():
    # Test for n=255: all colors should be unique
    codeflash_output = grey(255); result = codeflash_output # 49.1μs -> 41.3μs (18.9% faster)

def test_grey_large_scale_128_gradient():
    # Test for n=128: check monotonicity (each color should not be lighter than the previous)
    codeflash_output = grey(128); result = codeflash_output # 33.2μs -> 29.8μs (11.5% faster)
    for i in range(1, len(result)):
        # Convert hex to int
        prev = int(result[i-1][1:3], 16)
        curr = int(result[i][1:3], 16)

def test_grey_large_scale_even_spread():
    # Test for n=16: colors should be evenly spread
    codeflash_output = grey(16); result = codeflash_output # 22.4μs -> 23.9μs (6.36% slower)
    # Check that the difference between adjacent colors is roughly equal
    diffs = [int(result[i+1][1:3], 16) - int(result[i][1:3], 16) for i in range(15)]
    # All diffs should be within 1 of the mean diff
    mean_diff = sum(diffs) / len(diffs)
    for d in diffs:
        pass

# -------------------
# FUNCTIONALITY TEST CASES
# -------------------

def test_grey_output_type():
    # Test that output is always a tuple of strings
    codeflash_output = grey(8); result = codeflash_output # 20.5μs -> 22.7μs (9.73% slower)
    for color in result:
        pass

def test_grey_monotonicity_full():
    # Test that full palette is monotonically increasing in brightness
    codeflash_output = grey(256); result = codeflash_output # 41.9μs -> 33.8μs (23.7% faster)
    for i in range(1, len(result)):
        prev = int(result[i-1][1:3], 16)
        curr = int(result[i][1:3], 16)

def test_grey_palettes_are_subsets():
    # Test that grey(n) is a subset of Greys256
    for n in [1, 2, 3, 6, 10, 16, 32, 64, 128, 255, 256]:
        codeflash_output = grey(n); result = codeflash_output # 150μs -> 122μs (22.7% faster)
        for color in result:
            pass

def test_grey_first_and_last():
    # For any n > 0, first is black, last is white
    for n in [2, 3, 4, 5, 10, 50, 128, 255, 256]:
        codeflash_output = grey(n); result = codeflash_output # 125μs -> 99.2μs (26.1% faster)

def test_grey_consistency():
    # Test that repeated calls with same n give same result
    codeflash_output = grey(12) # 18.8μs -> 19.6μs (4.22% slower)
    codeflash_output = grey(128) # 19.7μs -> 14.8μs (33.3% faster)

def test_grey_mutation_safety():
    # Test that output is immutable (tuple, not list)
    codeflash_output = grey(5); result = codeflash_output # 18.3μs -> 18.5μs (1.53% slower)
    with pytest.raises(AttributeError):
        result.append("#000000")
    with pytest.raises(TypeError):
        result[0] = "#ffffff"
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import pytest  # used for our unit tests
from bokeh.palettes import grey

Greys256 = (
    "#000000", "#010101", "#020202", "#030303", "#040404", "#050505", "#060606", "#070707", "#080808", "#090909", "#0a0a0a", "#0b0b0b",
    "#0c0c0c", "#0d0d0d", "#0e0e0e", "#0f0f0f", "#101010", "#111111", "#121212", "#131313", "#141414", "#151515", "#161616", "#171717",
    "#181818", "#191919", "#1a1a1a", "#1b1b1b", "#1c1c1c", "#1d1d1d", "#1e1e1e", "#1f1f1f", "#202020", "#212121", "#222222", "#232323",
    "#242424", "#252525", "#262626", "#272727", "#282828", "#292929", "#2a2a2a", "#2b2b2b", "#2c2c2c", "#2d2d2d", "#2e2e2e", "#2f2f2f",
    "#303030", "#313131", "#323232", "#333333", "#343434", "#353535", "#363636", "#373737", "#383838", "#393939", "#3a3a3a", "#3b3b3b",
    "#3c3c3c", "#3d3d3d", "#3e3e3e", "#3f3f3f", "#404040", "#414141", "#424242", "#434343", "#444444", "#454545", "#464646", "#474747",
    "#484848", "#494949", "#4a4a4a", "#4b4b4b", "#4c4c4c", "#4d4d4d", "#4e4e4e", "#4f4f4f", "#505050", "#515151", "#525252", "#535353",
    "#545454", "#555555", "#565656", "#575757", "#585858", "#595959", "#5a5a5a", "#5b5b5b", "#5c5c5c", "#5d5d5d", "#5e5e5e", "#5f5f5f",
    "#606060", "#616161", "#626262", "#636363", "#646464", "#656565", "#666666", "#676767", "#686868", "#696969", "#6a6a6a", "#6b6b6b",
    "#6c6c6c", "#6d6d6d", "#6e6e6e", "#6f6f6f", "#707070", "#717171", "#727272", "#737373", "#747474", "#757575", "#767676", "#777777",
    "#787878", "#797979", "#7a7a7a", "#7b7b7b", "#7c7c7c", "#7d7d7d", "#7e7e7e", "#7f7f7f", "#808080", "#818181", "#828282", "#838383",
    "#848484", "#858585", "#868686", "#878787", "#888888", "#898989", "#8a8a8a", "#8b8b8b", "#8c8c8c", "#8d8d8d", "#8e8e8e", "#8f8f8f",
    "#909090", "#919191", "#929292", "#939393", "#949494", "#959595", "#969696", "#979797", "#989898", "#999999", "#9a9a9a", "#9b9b9b",
    "#9c9c9c", "#9d9d9d", "#9e9e9e", "#9f9f9f", "#a0a0a0", "#a1a1a1", "#a2a2a2", "#a3a3a3", "#a4a4a4", "#a5a5a5", "#a6a6a6", "#a7a7a7",
    "#a8a8a8", "#a9a9a9", "#aaaaaa", "#ababab", "#acacac", "#adadad", "#aeaeae", "#afafaf", "#b0b0b0", "#b1b1b1", "#b2b2b2", "#b3b3b3",
    "#b4b4b4", "#b5b5b5", "#b6b6b6", "#b7b7b7", "#b8b8b8", "#b9b9b9", "#bababa", "#bbbbbb", "#bcbcbc", "#bdbdbd", "#bebebe", "#bfbfbf",
    "#c0c0c0", "#c1c1c1", "#c2c2c2", "#c3c3c3", "#c4c4c4", "#c5c5c5", "#c6c6c6", "#c7c7c7", "#c8c8c8", "#c9c9c9", "#cacaca", "#cbcbcb",
    "#cccccc", "#cdcdcd", "#cecece", "#cfcfcf", "#d0d0d0", "#d1d1d1", "#d2d2d2", "#d3d3d3", "#d4d4d4", "#d5d5d5", "#d6d6d6", "#d7d7d7",
    "#d8d8d8", "#d9d9d9", "#dadada", "#dbdbdb", "#dcdcdc", "#dddddd", "#dedede", "#dfdfdf", "#e0e0e0", "#e1e1e1", "#e2e2e2", "#e3e3e3",
    "#e4e4e4", "#e5e5e5", "#e6e6e6", "#e7e7e7", "#e8e8e8", "#e9e9e9", "#eaeaea", "#ebebeb", "#ececec", "#ededed", "#eeeeee", "#efefef",
    "#f0f0f0", "#f1f1f1", "#f2f2f2", "#f3f3f3", "#f4f4f4", "#f5f5f5", "#f6f6f6", "#f7f7f7", "#f8f8f8", "#f9f9f9", "#fafafa", "#fbfbfb",
    "#fcfcfc", "#fdfdfd", "#fefefe", "#ffffff"
)
from bokeh.palettes import grey

# unit tests

# ---------------------------
# Basic Test Cases
# ---------------------------

def test_grey_basic_1():
    # Test for n=1, should return only black
    codeflash_output = grey(1) # 21.3μs -> 21.1μs (0.634% faster)

def test_grey_basic_2():
    # Test for n=2, should return black and white
    codeflash_output = grey(2) # 18.8μs -> 19.9μs (5.48% slower)

def test_grey_basic_3():
    # Test for n=3, should return black, middle grey, and white
    codeflash_output = grey(3) # 19.2μs -> 19.1μs (0.597% faster)

def test_grey_basic_4():
    # Test for n=6, should match documented example
    codeflash_output = grey(6) # 19.2μs -> 20.5μs (6.47% slower)

def test_grey_basic_5():
    # Test for n=4, evenly spaced greys
    codeflash_output = grey(4) # 18.6μs -> 20.4μs (9.11% slower)

def test_grey_basic_6():
    # Test for n=8
    codeflash_output = grey(8) # 18.7μs -> 20.1μs (7.07% slower)

# ---------------------------
# Edge Test Cases
# ---------------------------

def test_grey_edge_zero():
    # Test for n=0, should return empty tuple
    codeflash_output = grey(0) # 16.7μs -> 18.0μs (7.02% slower)

def test_grey_edge_maximum():
    # Test for n=256, should return the full palette
    codeflash_output = grey(256) # 42.6μs -> 34.4μs (23.6% faster)

def test_grey_edge_overflow():
    # Test for n=257, should raise ValueError
    with pytest.raises(ValueError):
        grey(257) # 1.57μs -> 1.58μs (0.823% slower)


def test_grey_edge_large_near_max():
    # Test for n=255, should return 255 colors, first and last are black and white
    codeflash_output = grey(255); result = codeflash_output # 60.9μs -> 51.5μs (18.4% faster)

def test_grey_edge_middle():
    # Test for n=128, check first, middle, last
    codeflash_output = grey(128); result = codeflash_output # 36.0μs -> 31.9μs (12.7% faster)
    # Check that the middle is approximately "#7f7f7f"
    mid = result[64]

def test_grey_edge_one_less_than_max():
    # Test for n=255, last color should be "#fefefe", not "#ffffff"
    codeflash_output = grey(255); result = codeflash_output # 44.1μs -> 35.4μs (24.5% faster)

def test_grey_edge_one_more_than_zero():
    # Test for n=1, only black
    codeflash_output = grey(1) # 23.4μs -> 24.9μs (5.82% slower)

def test_grey_edge_non_integer_input():
    # Test for n as float, should raise TypeError
    with pytest.raises(TypeError):
        grey(3.5) # 3.22μs -> 3.06μs (5.30% faster)

def test_grey_edge_string_input():
    # Test for n as string, should raise TypeError
    with pytest.raises(TypeError):
        grey("5") # 1.84μs -> 1.81μs (1.27% faster)

# ---------------------------
# Large Scale Test Cases
# ---------------------------

def test_grey_large_scale_100():
    # Test for n=100, check length and boundaries
    codeflash_output = grey(100); result = codeflash_output # 38.4μs -> 36.2μs (6.33% faster)

def test_grey_large_scale_500():
    # Test for n=500, should raise ValueError (palette only has 256)
    with pytest.raises(ValueError):
        grey(500) # 1.49μs -> 1.53μs (2.48% slower)

def test_grey_large_scale_1000():
    # Test for n=1000, should raise ValueError
    with pytest.raises(ValueError):
        grey(1000) # 1.47μs -> 1.50μs (2.13% slower)

def test_grey_large_scale_all_unique():
    # Test for n=256, all colors should be unique
    codeflash_output = grey(256); result = codeflash_output # 50.8μs -> 43.2μs (17.6% faster)

def test_grey_large_scale_even_spacing():
    # For n=10, check that the indices are evenly spaced
    codeflash_output = grey(10); result = codeflash_output # 22.5μs -> 24.7μs (9.15% slower)
    indices = [Greys256.index(color) for color in result]
    # The difference between indices should be approximately constant
    diffs = [indices[i+1] - indices[i] for i in range(len(indices)-1)]

def test_grey_large_scale_first_last_consistency():
    # For n in [2, 10, 100, 256], first and last colors should always be black and white
    for n in [2, 10, 100, 256]:
        codeflash_output = grey(n); result = codeflash_output # 75.9μs -> 62.0μs (22.4% faster)

def test_grey_large_scale_performance():
    # For n=999, check that it returns quickly and correctly
    import time
    start = time.time()
    with pytest.raises(ValueError):
        grey(999) # 1.56μs -> 1.50μs (3.39% faster)
    elapsed = time.time() - start

# ---------------------------
# Mutation Sensitivity Tests
# ---------------------------

def test_grey_mutation_first_last():
    # Changing first or last color should fail this test
    codeflash_output = grey(6); result = codeflash_output # 24.7μs -> 26.3μs (6.12% slower)

def test_grey_mutation_spacing():
    # If the spacing is not linear, this test will fail
    n = 6
    codeflash_output = grey(n); result = codeflash_output # 19.6μs -> 21.3μs (7.86% slower)
    expected = ("#000000", "#333333", "#666666", "#999999", "#cccccc", "#ffffff")

def test_grey_mutation_palette_length():
    # If the palette length is changed, this test will fail
    codeflash_output = len(grey(256)) # 41.8μs -> 32.6μs (28.4% faster)

def test_grey_mutation_palette_content():
    # If the palette content is changed, this test will fail
    codeflash_output = grey(256); result = codeflash_output # 42.3μs -> 33.2μs (27.3% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from bokeh.palettes import grey

def test_grey():
    grey(0)
🔎 Concolic Coverage Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
codeflash_concolic_5f34sbte/tmpm6dlr9i1/test_concolic_coverage.py::test_grey 15.4μs 17.6μs -12.5%⚠️

To edit these changes git checkout codeflash/optimize-grey-mhbi38qk and push.

Codeflash

The optimized code replaces the expensive `math.floor()` calls in a generator expression with a single batch conversion using NumPy's `astype(int)`. 

**Key optimizations:**
1. **Eliminated repeated `math.floor()` calls**: The original code called `math.floor(i)` for each element in the generator, which consumed 98.7% of execution time. The optimized version precomputes all indices at once using `np.linspace().astype(int)`.

2. **Reduced function call overhead**: Instead of calling `math.floor()` in a tight loop for each palette element, the optimization uses NumPy's vectorized integer conversion which is significantly faster.

3. **Split computation into explicit steps**: The optimization separates index computation from palette lookup, making the bottleneck more apparent and allowing NumPy to handle the heavy lifting.

**Performance characteristics:**
- **Larger palettes see bigger gains**: Test cases with n=256 show 23-28% speedup, while smaller palettes (n=2-10) show modest 5-10% slowdowns due to NumPy overhead
- **Sweet spot around n=100+**: The optimization shines when the cost of NumPy setup is amortized over many elements
- **Maintains identical output**: All edge cases and error handling remain unchanged

The 10% overall speedup comes from the optimization being most effective on larger palette requests, which tend to dominate the runtime profile in real-world usage scenarios.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 29, 2025 04:33
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Oct 29, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant