-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Labels
component: pipelinesRelates to the SageMaker Pipeline PlatformRelates to the SageMaker Pipeline Platformtype: feature request
Description
Describe the bug
Upserting a pipeline always causes cache misses
To reproduce
Create a pipeline with caching enabled. Run the pipeline. Upsert the pipeline. Run the pipeline again. You'll get a cache miss every time
cache_config = CacheConfig(
enable_caching=True,
expire_after = "P30M"
)
# define the pre-processor:
processor = PySparkProcessor(
role=role,
instance_type="ml.m5.large",
instance_count=1,
framework_version="3.0"
)
step1 = ProcessingStep(
name="step1",
processor=processor,
code="processor1.py",
cache_config=cache_config
)
# define the pipeline
pipeline = Pipeline(
name="pipeline1",
steps=[step1]
)
pipeline.upsert(role_arn="...")
pipeline.start()
Expected behavior
I expect a cache hit, even if I upsert a pipeline
System information
A description of your system. Please provide:
- SageMaker Python SDK version: 2.66.2 (latest)
- Framework name (eg. PyTorch) or algorithm (eg. KMeans): any
- Framework version: any
- Python version: 3.8.10
- CPU or GPU: any
- Custom Docker image (Y/N): no
Additional context
Add any other context about the problem here.
Metadata
Metadata
Assignees
Labels
component: pipelinesRelates to the SageMaker Pipeline PlatformRelates to the SageMaker Pipeline Platformtype: feature request