Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
218 changes: 8 additions & 210 deletions docs/ml-linear-methods.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,77 +57,15 @@ $\alpha$ and `regParam` corresponds to $\lambda$.
<div class="codetabs">

<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.classification.LogisticRegression

// Load training data
val training = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)

// Fit the model
val lrModel = lr.fit(training)

// Print the coefficients and intercept for logistic regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
{% endhighlight %}
{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionWithElasticNetExample.scala %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;

public class LogisticRegressionWithElasticNetExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("Logistic Regression with Elastic Net Example");

SparkContext sc = new SparkContext(conf);
SQLContext sql = new SQLContext(sc);
String path = "data/mllib/sample_libsvm_data.txt";

// Load training data
DataFrame training = sqlContext.read().format("libsvm").load(path);

LogisticRegression lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8);

// Fit the model
LogisticRegressionModel lrModel = lr.fit(training);

// Print the coefficients and intercept for logistic regression
System.out.println("Coefficients: " + lrModel.coefficients() + " Intercept: " + lrModel.intercept());
}
}
{% endhighlight %}
{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionWithElasticNetExample.java %}
</div>

<div data-lang="python" markdown="1">
{% highlight python %}
from pyspark.ml.classification import LogisticRegression

# Load training data
training = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

# Fit the model
lrModel = lr.fit(training)

# Print the coefficients and intercept for logistic regression
print("Coefficients: " + str(lrModel.coefficients))
print("Intercept: " + str(lrModel.intercept))
{% endhighlight %}
{% include_example python/ml/logistic_regression_with_elastic_net.py %}
</div>

</div>
Expand All @@ -152,33 +90,7 @@ This will likely change when multiclass classification is supported.

Continuing the earlier example:

{% highlight scala %}
import org.apache.spark.ml.classification.BinaryLogisticRegressionSummary

// Extract the summary from the returned LogisticRegressionModel instance trained in the earlier example
val trainingSummary = lrModel.summary

// Obtain the objective per iteration.
val objectiveHistory = trainingSummary.objectiveHistory
objectiveHistory.foreach(loss => println(loss))

// Obtain the metrics useful to judge performance on test data.
// We cast the summary to a BinaryLogisticRegressionSummary since the problem is a
// binary classification problem.
val binarySummary = trainingSummary.asInstanceOf[BinaryLogisticRegressionSummary]

// Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
val roc = binarySummary.roc
roc.show()
println(binarySummary.areaUnderROC)

// Set the model threshold to maximize F-Measure
val fMeasure = binarySummary.fMeasureByThreshold
val maxFMeasure = fMeasure.select(max("F-Measure")).head().getDouble(0)
val bestThreshold = fMeasure.where($"F-Measure" === maxFMeasure).
select("threshold").head().getDouble(0)
lrModel.setThreshold(bestThreshold)
{% endhighlight %}
{% include_example scala/org/apache/spark/examples/ml/LogisticRegressionSummaryExample.scala %}
</div>

<div data-lang="java" markdown="1">
Expand All @@ -192,39 +104,7 @@ This will likely change when multiclass classification is supported.

Continuing the earlier example:

{% highlight java %}
import org.apache.spark.ml.classification.LogisticRegressionTrainingSummary;
import org.apache.spark.ml.classification.BinaryLogisticRegressionSummary;
import org.apache.spark.sql.functions;

// Extract the summary from the returned LogisticRegressionModel instance trained in the earlier example
LogisticRegressionTrainingSummary trainingSummary = lrModel.summary();

// Obtain the loss per iteration.
double[] objectiveHistory = trainingSummary.objectiveHistory();
for (double lossPerIteration : objectiveHistory) {
System.out.println(lossPerIteration);
}

// Obtain the metrics useful to judge performance on test data.
// We cast the summary to a BinaryLogisticRegressionSummary since the problem is a
// binary classification problem.
BinaryLogisticRegressionSummary binarySummary = (BinaryLogisticRegressionSummary) trainingSummary;

// Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
DataFrame roc = binarySummary.roc();
roc.show();
roc.select("FPR").show();
System.out.println(binarySummary.areaUnderROC());

// Get the threshold corresponding to the maximum F-Measure and rerun LogisticRegression with
// this selected threshold.
DataFrame fMeasure = binarySummary.fMeasureByThreshold();
double maxFMeasure = fMeasure.select(functions.max("F-Measure")).head().getDouble(0);
double bestThreshold = fMeasure.where(fMeasure.col("F-Measure").equalTo(maxFMeasure)).
select("threshold").head().getDouble(0);
lrModel.setThreshold(bestThreshold);
{% endhighlight %}
{% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java %}
</div>

<!--- TODO: Add python model summaries once implemented -->
Expand All @@ -244,98 +124,16 @@ regression model and extracting model summary statistics.
<div class="codetabs">

<div data-lang="scala" markdown="1">
{% highlight scala %}
import org.apache.spark.ml.regression.LinearRegression

// Load training data
val training = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

val lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)

// Fit the model
val lrModel = lr.fit(training)

// Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")

// Summarize the model over the training set and print out some metrics
val trainingSummary = lrModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
trainingSummary.residuals.show()
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"r2: ${trainingSummary.r2}")
{% endhighlight %}
{% include_example scala/org/apache/spark/examples/ml/LinearRegressionWithElasticNetExample.scala %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import org.apache.spark.ml.regression.LinearRegression;
import org.apache.spark.ml.regression.LinearRegressionModel;
import org.apache.spark.ml.regression.LinearRegressionTrainingSummary;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;

public class LinearRegressionWithElasticNetExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("Linear Regression with Elastic Net Example");

SparkContext sc = new SparkContext(conf);
SQLContext sql = new SQLContext(sc);
String path = "data/mllib/sample_libsvm_data.txt";

// Load training data
DataFrame training = sqlContext.read().format("libsvm").load(path);

LinearRegression lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8);

// Fit the model
LinearRegressionModel lrModel = lr.fit(training);

// Print the coefficients and intercept for linear regression
System.out.println("Coefficients: " + lrModel.coefficients() + " Intercept: " + lrModel.intercept());

// Summarize the model over the training set and print out some metrics
LinearRegressionTrainingSummary trainingSummary = lrModel.summary();
System.out.println("numIterations: " + trainingSummary.totalIterations());
System.out.println("objectiveHistory: " + Vectors.dense(trainingSummary.objectiveHistory()));
trainingSummary.residuals().show();
System.out.println("RMSE: " + trainingSummary.rootMeanSquaredError());
System.out.println("r2: " + trainingSummary.r2());
}
}
{% endhighlight %}
{% include_example java/org/apache/spark/examples/ml/JavaLinearRegressionWithElasticNetExample.java %}
</div>

<div data-lang="python" markdown="1">
<!--- TODO: Add python model summaries once implemented -->
{% highlight python %}
from pyspark.ml.regression import LinearRegression

# Load training data
training = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

lr = LinearRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

# Fit the model
lrModel = lr.fit(training)

# Print the coefficients and intercept for linear regression
print("Coefficients: " + str(lrModel.coefficients))
print("Intercept: " + str(lrModel.intercept))

# Linear regression model summary is not yet supported in Python.
{% endhighlight %}
{% include_example python/ml/linear_regression_with_elastic_net.py %}
</div>

</div>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
// $example on$
import org.apache.spark.ml.regression.LinearRegression;
import org.apache.spark.ml.regression.LinearRegressionModel;
import org.apache.spark.ml.regression.LinearRegressionTrainingSummary;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
// $example off$

public class JavaLinearRegressionWithElasticNetExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaLinearRegressionWithElasticNetExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);

// $example on$
// Load training data
DataFrame training = sqlContext.read().format("libsvm")
.load("data/mllib/sample_libsvm_data.txt");

LinearRegression lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8);

// Fit the model
LinearRegressionModel lrModel = lr.fit(training);

// Print the coefficients and intercept for linear regression
System.out.println("Coefficients: "
+ lrModel.coefficients() + " Intercept: " + lrModel.intercept());

// Summarize the model over the training set and print out some metrics
LinearRegressionTrainingSummary trainingSummary = lrModel.summary();
System.out.println("numIterations: " + trainingSummary.totalIterations());
System.out.println("objectiveHistory: " + Vectors.dense(trainingSummary.objectiveHistory()));
trainingSummary.residuals().show();
System.out.println("RMSE: " + trainingSummary.rootMeanSquaredError());
System.out.println("r2: " + trainingSummary.r2());
// $example off$

jsc.stop();
}
}
Loading