-
Notifications
You must be signed in to change notification settings - Fork 28.9k
[SPARK-10162] [SQL] Fix the timezone omitting for PySpark Dataframe filter function #8536
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Can you add a regression test for this, perhaps by taking the example that you gave and adding it to |
…h timestamp containing timezone
|
Unit test is added. Changed |
|
Jenkins, this is ok to test. |
|
Test build #41836 has finished for PR 8536 at commit
|
|
Test build #41837 has finished for PR 8536 at commit
|
…ilter function This PR addresses [SPARK-10162](https://issues.apache.org/jira/browse/SPARK-10162) The issue is with DataFrame filter() function, if datetime.datetime is passed to it: * Timezone information of this datetime is ignored * This datetime is assumed to be in local timezone, which depends on the OS timezone setting Fix includes both code change and regression test. Problem reproduction code on master: ```python import pytz from datetime import datetime from pyspark.sql import * from pyspark.sql.types import * sqc = SQLContext(sc) df = sqc.createDataFrame([], StructType([StructField("dt", TimestampType())])) m1 = pytz.timezone('UTC') m2 = pytz.timezone('Etc/GMT+3') df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m1)).explain() df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m2)).explain() ``` It gives the same timestamp ignoring time zone: ``` >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m1)).explain() Filter (dt#0 > 946713600000000) Scan PhysicalRDD[dt#0] >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m2)).explain() Filter (dt#0 > 946713600000000) Scan PhysicalRDD[dt#0] ``` After the fix: ``` >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m1)).explain() Filter (dt#0 > 946684800000000) Scan PhysicalRDD[dt#0] >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m2)).explain() Filter (dt#0 > 946695600000000) Scan PhysicalRDD[dt#0] ``` PR [8536](#8536) was occasionally closed by me dropping the repo Author: 0x0FFF <[email protected]> Closes #8555 from 0x0FFF/SPARK-10162.
…ilter function This PR addresses [SPARK-10162](https://issues.apache.org/jira/browse/SPARK-10162) The issue is with DataFrame filter() function, if datetime.datetime is passed to it: * Timezone information of this datetime is ignored * This datetime is assumed to be in local timezone, which depends on the OS timezone setting Fix includes both code change and regression test. Problem reproduction code on master: ```python import pytz from datetime import datetime from pyspark.sql import * from pyspark.sql.types import * sqc = SQLContext(sc) df = sqc.createDataFrame([], StructType([StructField("dt", TimestampType())])) m1 = pytz.timezone('UTC') m2 = pytz.timezone('Etc/GMT+3') df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m1)).explain() df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m2)).explain() ``` It gives the same timestamp ignoring time zone: ``` >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m1)).explain() Filter (dt#0 > 946713600000000) Scan PhysicalRDD[dt#0] >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m2)).explain() Filter (dt#0 > 946713600000000) Scan PhysicalRDD[dt#0] ``` After the fix: ``` >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m1)).explain() Filter (dt#0 > 946684800000000) Scan PhysicalRDD[dt#0] >>> df.filter(df.dt > datetime(2000, 01, 01, tzinfo=m2)).explain() Filter (dt#0 > 946695600000000) Scan PhysicalRDD[dt#0] ``` PR [8536](apache/spark#8536) was occasionally closed by me dropping the repo Author: 0x0FFF <[email protected]> Closes #8555 from 0x0FFF/SPARK-10162.
This PR addresses SPARK-10162
The change applied:
datetime.datetimeobject to unix timestamp for passing it to Java