Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -210,14 +210,58 @@ case class IsNotNull(child: Expression) extends UnaryExpression with Predicate {
}
}

/**
* A predicate that is evaluated to be true if there are at least `n` null values.
*/
case class AtLeastNNulls(n: Int, children: Seq[Expression]) extends Predicate {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just to briefly clarify, I guess that the problem was that AtLeastNNulls also dropped NaNs but that we can't do that since it would lead to a violation of our NaN-equality semantics when joining on float/double columns?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah. Because null means Unknown, so when you have a predicate null = null, the result is false (meaning Unknown). But for NaN, in our current semantic, two NaN are equal.

override def nullable: Boolean = false
override def foldable: Boolean = children.forall(_.foldable)
override def toString: String = s"AtLeastNNulls($n, ${children.mkString(",")})"

private[this] val childrenArray = children.toArray

override def eval(input: InternalRow): Boolean = {
var numNulls = 0
var i = 0
while (i < childrenArray.length && numNulls < n) {
val evalC = childrenArray(i).eval(input)
if (evalC == null) {
numNulls += 1
}
i += 1
}
numNulls >= n
}

override def genCode(ctx: CodeGenContext, ev: GeneratedExpressionCode): String = {
val numNulls = ctx.freshName("numNulls")
val code = children.map { e =>
val eval = e.gen(ctx)
s"""
if ($numNulls < $n) {
${eval.code}
if (${eval.isNull}) {
$numNulls += 1;
}
}
"""
}.mkString("\n")
s"""
int $numNulls = 0;
$code
boolean ${ev.isNull} = false;
boolean ${ev.primitive} = $numNulls >= $n;
"""
}
}

/**
* A predicate that is evaluated to be true if there are at least `n` non-null and non-NaN values.
*/
case class AtLeastNNonNulls(n: Int, children: Seq[Expression]) extends Predicate {
case class AtLeastNNonNullNans(n: Int, children: Seq[Expression]) extends Predicate {
override def nullable: Boolean = false
override def foldable: Boolean = children.forall(_.foldable)
override def toString: String = s"AtLeastNNulls(n, ${children.mkString(",")})"
override def toString: String = s"AtLeastNNonNullNans($n, ${children.mkString(",")})"

private[this] val childrenArray = children.toArray

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,14 @@ import org.apache.spark.sql.types._

abstract class Optimizer extends RuleExecutor[LogicalPlan]

object DefaultOptimizer extends Optimizer {
val batches =
class DefaultOptimizer extends Optimizer {

/**
* Override to provide additional rules for the "Operator Optimizations" batch.
*/
val extendedOperatorOptimizationRules: Seq[Rule[LogicalPlan]] = Nil

lazy val batches =
// SubQueries are only needed for analysis and can be removed before execution.
Batch("Remove SubQueries", FixedPoint(100),
EliminateSubQueries) ::
Expand All @@ -41,26 +47,27 @@ object DefaultOptimizer extends Optimizer {
RemoveLiteralFromGroupExpressions) ::
Batch("Operator Optimizations", FixedPoint(100),
// Operator push down
SetOperationPushDown,
SamplePushDown,
PushPredicateThroughJoin,
PushPredicateThroughProject,
PushPredicateThroughGenerate,
ColumnPruning,
SetOperationPushDown ::
SamplePushDown ::
PushPredicateThroughJoin ::
PushPredicateThroughProject ::
PushPredicateThroughGenerate ::
ColumnPruning ::
// Operator combine
ProjectCollapsing,
CombineFilters,
CombineLimits,
ProjectCollapsing ::
CombineFilters ::
CombineLimits ::
// Constant folding
NullPropagation,
OptimizeIn,
ConstantFolding,
LikeSimplification,
BooleanSimplification,
RemovePositive,
SimplifyFilters,
SimplifyCasts,
SimplifyCaseConversionExpressions) ::
NullPropagation ::
OptimizeIn ::
ConstantFolding ::
LikeSimplification ::
BooleanSimplification ::
RemovePositive ::
SimplifyFilters ::
SimplifyCasts ::
SimplifyCaseConversionExpressions ::
extendedOperatorOptimizationRules.toList : _*) ::
Batch("Decimal Optimizations", FixedPoint(100),
DecimalAggregates) ::
Batch("LocalRelation", FixedPoint(100),
Expand Down Expand Up @@ -222,12 +229,18 @@ object ColumnPruning extends Rule[LogicalPlan] {
}

/** Applies a projection only when the child is producing unnecessary attributes */
private def prunedChild(c: LogicalPlan, allReferences: AttributeSet) =
private def prunedChild(c: LogicalPlan, allReferences: AttributeSet) = {
if ((c.outputSet -- allReferences.filter(c.outputSet.contains)).nonEmpty) {
Project(allReferences.filter(c.outputSet.contains).toSeq, c)
// We need to preserve the nullability of c's output.
// So, we first create a outputMap and if a reference is from the output of
// c, we use that output attribute from c.
val outputMap = AttributeMap(c.output.map(attr => (attr, attr)))
val projectList = allReferences.filter(outputMap.contains).map(outputMap).toSeq
Project(projectList, c)
} else {
c
}
}
}

/**
Expand Down Expand Up @@ -516,6 +529,13 @@ object BooleanSimplification extends Rule[LogicalPlan] with PredicateHelper {
*/
object CombineFilters extends Rule[LogicalPlan] {
def apply(plan: LogicalPlan): LogicalPlan = plan transform {
case Filter(Not(AtLeastNNulls(1, e1)), Filter(Not(AtLeastNNulls(1, e2)), grandChild)) =>
// If we are combining two expressions Not(AtLeastNNulls(1, e1)) and
// Not(AtLeastNNulls(1, e2))
// (this is used to make sure there is no null in the result of e1 and e2 and
// they are added by FilterNullsInJoinKey optimziation rule), we can
// just create a Not(AtLeastNNulls(1, (e1 ++ e2).distinct)).
Filter(Not(AtLeastNNulls(1, (e1 ++ e2).distinct)), grandChild)
case ff @ Filter(fc, nf @ Filter(nc, grandChild)) => Filter(And(nc, fc), grandChild)
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,37 @@ case class Generate(
}

case class Filter(condition: Expression, child: LogicalPlan) extends UnaryNode {
override def output: Seq[Attribute] = child.output
/**
* Indicates if `atLeastNNulls` is used to check if atLeastNNulls.children
* have at least one null value and atLeastNNulls.children are all attributes.
*/
private def isAtLeastOneNullOutputAttributes(atLeastNNulls: AtLeastNNulls): Boolean = {
val expressions = atLeastNNulls.children
val n = atLeastNNulls.n
if (n != 1) {
// AtLeastNNulls is not used to check if atLeastNNulls.children have
// at least one null value.
false
} else {
// AtLeastNNulls is used to check if atLeastNNulls.children have
// at least one null value. We need to make sure all atLeastNNulls.children
// are attributes.
expressions.forall(_.isInstanceOf[Attribute])
}
}

override def output: Seq[Attribute] = condition match {
case Not(a: AtLeastNNulls) if isAtLeastOneNullOutputAttributes(a) =>
// The condition is used to make sure that there is no null value in
// a.children.
val nonNullableAttributes = AttributeSet(a.children.asInstanceOf[Seq[Attribute]])
child.output.map {
case attr if nonNullableAttributes.contains(attr) =>
attr.withNullability(false)
case attr => attr
}
case _ => child.output
}
}

case class Union(left: LogicalPlan, right: LogicalPlan) extends BinaryNode {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,8 @@ import org.apache.spark.sql.catalyst.plans.logical.{OneRowRelation, Project}
trait ExpressionEvalHelper {
self: SparkFunSuite =>

protected val defaultOptimizer = new DefaultOptimizer

protected def create_row(values: Any*): InternalRow = {
InternalRow.fromSeq(values.map(CatalystTypeConverters.convertToCatalyst))
}
Expand Down Expand Up @@ -188,7 +190,7 @@ trait ExpressionEvalHelper {
expected: Any,
inputRow: InternalRow = EmptyRow): Unit = {
val plan = Project(Alias(expression, s"Optimized($expression)")() :: Nil, OneRowRelation)
val optimizedPlan = DefaultOptimizer.execute(plan)
val optimizedPlan = defaultOptimizer.execute(plan)
checkEvaluationWithoutCodegen(optimizedPlan.expressions.head, expected, inputRow)
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ import org.apache.spark.SparkFunSuite
import org.apache.spark.sql.catalyst.dsl.expressions._
import org.apache.spark.sql.catalyst.expressions.codegen.{GenerateProjection, GenerateMutableProjection}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.optimizer.DefaultOptimizer
import org.apache.spark.sql.catalyst.plans.logical.{OneRowRelation, Project}
import org.apache.spark.sql.types._

Expand Down Expand Up @@ -168,7 +167,7 @@ class MathFunctionsSuite extends SparkFunSuite with ExpressionEvalHelper {
expression: Expression,
inputRow: InternalRow = EmptyRow): Unit = {
val plan = Project(Alias(expression, s"Optimized($expression)")() :: Nil, OneRowRelation)
val optimizedPlan = DefaultOptimizer.execute(plan)
val optimizedPlan = defaultOptimizer.execute(plan)
checkNaNWithoutCodegen(optimizedPlan.expressions.head, inputRow)
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ class NullFunctionsSuite extends SparkFunSuite with ExpressionEvalHelper {
}
}

test("AtLeastNNonNulls") {
test("AtLeastNNonNullNans") {
val mix = Seq(Literal("x"),
Literal.create(null, StringType),
Literal.create(null, DoubleType),
Expand All @@ -96,11 +96,46 @@ class NullFunctionsSuite extends SparkFunSuite with ExpressionEvalHelper {
Literal(Float.MaxValue),
Literal(false))

checkEvaluation(AtLeastNNonNulls(2, mix), true, EmptyRow)
checkEvaluation(AtLeastNNonNulls(3, mix), false, EmptyRow)
checkEvaluation(AtLeastNNonNulls(3, nanOnly), true, EmptyRow)
checkEvaluation(AtLeastNNonNulls(4, nanOnly), false, EmptyRow)
checkEvaluation(AtLeastNNonNulls(3, nullOnly), true, EmptyRow)
checkEvaluation(AtLeastNNonNulls(4, nullOnly), false, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(0, mix), true, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(2, mix), true, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(3, mix), false, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(0, nanOnly), true, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(3, nanOnly), true, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(4, nanOnly), false, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(0, nullOnly), true, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(3, nullOnly), true, EmptyRow)
checkEvaluation(AtLeastNNonNullNans(4, nullOnly), false, EmptyRow)
}

test("AtLeastNNull") {
val mix = Seq(Literal("x"),
Literal.create(null, StringType),
Literal.create(null, DoubleType),
Literal(Double.NaN),
Literal(5f))

val nanOnly = Seq(Literal("x"),
Literal(10.0),
Literal(Float.NaN),
Literal(math.log(-2)),
Literal(Double.MaxValue))

val nullOnly = Seq(Literal("x"),
Literal.create(null, DoubleType),
Literal.create(null, DecimalType.USER_DEFAULT),
Literal(Float.MaxValue),
Literal(false))

checkEvaluation(AtLeastNNulls(0, mix), true, EmptyRow)
checkEvaluation(AtLeastNNulls(1, mix), true, EmptyRow)
checkEvaluation(AtLeastNNulls(2, mix), true, EmptyRow)
checkEvaluation(AtLeastNNulls(3, mix), false, EmptyRow)
checkEvaluation(AtLeastNNulls(0, nanOnly), true, EmptyRow)
checkEvaluation(AtLeastNNulls(1, nanOnly), false, EmptyRow)
checkEvaluation(AtLeastNNulls(2, nanOnly), false, EmptyRow)
checkEvaluation(AtLeastNNulls(0, nullOnly), true, EmptyRow)
checkEvaluation(AtLeastNNulls(1, nullOnly), true, EmptyRow)
checkEvaluation(AtLeastNNulls(2, nullOnly), true, EmptyRow)
checkEvaluation(AtLeastNNulls(3, nullOnly), false, EmptyRow)
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
def drop(minNonNulls: Int, cols: Seq[String]): DataFrame = {
// Filtering condition:
// only keep the row if it has at least `minNonNulls` non-null and non-NaN values.
val predicate = AtLeastNNonNulls(minNonNulls, cols.map(name => df.resolve(name)))
val predicate = AtLeastNNonNullNans(minNonNulls, cols.map(name => df.resolve(name)))
df.filter(Column(predicate))
}

Expand Down
6 changes: 6 additions & 0 deletions sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala
Original file line number Diff line number Diff line change
Expand Up @@ -406,6 +406,10 @@ private[spark] object SQLConf {
"spark.sql.useSerializer2",
defaultValue = Some(true), isPublic = false)

val ADVANCED_SQL_OPTIMIZATION = booleanConf(
"spark.sql.advancedOptimization",
defaultValue = Some(true), isPublic = false)

object Deprecated {
val MAPRED_REDUCE_TASKS = "mapred.reduce.tasks"
}
Expand Down Expand Up @@ -477,6 +481,8 @@ private[sql] class SQLConf extends Serializable with CatalystConf {

private[spark] def useSqlSerializer2: Boolean = getConf(USE_SQL_SERIALIZER2)

private[spark] def advancedSqlOptimizations: Boolean = getConf(ADVANCED_SQL_OPTIMIZATION)

private[spark] def autoBroadcastJoinThreshold: Int = getConf(AUTO_BROADCASTJOIN_THRESHOLD)

private[spark] def defaultSizeInBytes: Long =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ import org.apache.spark.sql.catalyst.rules.RuleExecutor
import org.apache.spark.sql.catalyst.{InternalRow, ParserDialect, _}
import org.apache.spark.sql.execution._
import org.apache.spark.sql.execution.datasources._
import org.apache.spark.sql.optimizer.FilterNullsInJoinKey
import org.apache.spark.sql.sources.BaseRelation
import org.apache.spark.sql.types._
import org.apache.spark.unsafe.types.UTF8String
Expand Down Expand Up @@ -156,7 +157,9 @@ class SQLContext(@transient val sparkContext: SparkContext)
}

@transient
protected[sql] lazy val optimizer: Optimizer = DefaultOptimizer
protected[sql] lazy val optimizer: Optimizer = new DefaultOptimizer {
override val extendedOperatorOptimizationRules = FilterNullsInJoinKey(self) :: Nil
}

@transient
protected[sql] val ddlParser = new DDLParser(sqlParser.parse(_))
Expand Down
Loading