Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,15 @@ package org.apache.spark.sql.catalyst.expressions
* @param expressions a sequence of expressions that determine the value of each column of the
* output row.
*/
class InterpretedProjection(expressions: Seq[Expression]) extends Projection {
def this(expressions: Seq[Expression], inputSchema: Seq[Attribute]) =
this(expressions.map(BindReferences.bindReference(_, inputSchema)))
class InterpretedProjection(expressions: Seq[Expression], mutableRow: Boolean = false)
extends Projection {

def this(
expressions: Seq[Expression],
inputSchema: Seq[Attribute],
mutableRow: Boolean = false) = {
this(expressions.map(BindReferences.bindReference(_, inputSchema)), mutableRow)
}

// null check is required for when Kryo invokes the no-arg constructor.
protected val exprArray = if (expressions != null) expressions.toArray else null
Expand All @@ -36,7 +42,7 @@ class InterpretedProjection(expressions: Seq[Expression]) extends Projection {
outputArray(i) = exprArray(i).eval(input)
i += 1
}
new GenericInternalRow(outputArray)
if (mutableRow) new GenericMutableRow(outputArray) else new GenericInternalRow(outputArray)
}

override def toString: String = s"Row => [${exprArray.mkString(",")}]"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,11 @@ case class GeneratedAggregate(
}
}

// even with empty input iterator, if this group-by operator is for
// global(groupingExpression.isEmpty) and final(partial=false),
// we still need to make a row from empty buffer.
def needEmptyBufferForwarded: Boolean = groupingExpressions.isEmpty && !partial

override def output: Seq[Attribute] = aggregateExpressions.map(_.toAttribute)

protected override def doExecute(): RDD[InternalRow] = {
Expand Down Expand Up @@ -246,7 +251,7 @@ case class GeneratedAggregate(
child.execute().mapPartitions { iter =>
// Builds a new custom class for holding the results of aggregation for a group.
val initialValues = computeFunctions.flatMap(_.initialValues)
val newAggregationBuffer = newProjection(initialValues, child.output)
val newAggregationBuffer = newProjection(initialValues, child.output, mutableRow = true)
log.info(s"Initial values: ${initialValues.mkString(",")}")

// A projection that computes the group given an input tuple.
Expand All @@ -270,7 +275,9 @@ case class GeneratedAggregate(

val joinedRow = new JoinedRow3

if (groupingExpressions.isEmpty) {
if (!iter.hasNext && !needEmptyBufferForwarded) {
Iterator[InternalRow]()
} else if (groupingExpressions.isEmpty) {
// TODO: Codegening anything other than the updateProjection is probably over kill.
val buffer = newAggregationBuffer(EmptyRow).asInstanceOf[MutableRow]
var currentRow: InternalRow = null
Expand All @@ -284,6 +291,8 @@ case class GeneratedAggregate(
val resultProjection = resultProjectionBuilder()
Iterator(resultProjection(buffer))
} else if (unsafeEnabled && schemaSupportsUnsafe) {
// unsafe aggregation buffer is not released if input is empty (see SPARK-8357)
assert(iter.hasNext, "There should be at least one row for this path")
log.info("Using Unsafe-based aggregator")
val aggregationMap = new UnsafeFixedWidthAggregationMap(
newAggregationBuffer(EmptyRow),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -153,13 +153,15 @@ abstract class SparkPlan extends QueryPlan[SparkPlan] with Logging with Serializ
}

protected def newProjection(
expressions: Seq[Expression], inputSchema: Seq[Attribute]): Projection = {
expressions: Seq[Expression],
inputSchema: Seq[Attribute],
mutableRow: Boolean = false): Projection = {
log.debug(
s"Creating Projection: $expressions, inputSchema: $inputSchema, codegen:$codegenEnabled")
if (codegenEnabled && expressions.forall(_.isThreadSafe)) {
GenerateProjection.generate(expressions, inputSchema)
} else {
new InterpretedProjection(expressions, inputSchema)
new InterpretedProjection(expressions, inputSchema, mutableRow)
}
}

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution

import org.apache.spark.sql.SQLConf
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.test.TestSQLContext
import org.apache.spark.sql.types.DataTypes._

class AggregateSuite extends SparkPlanTest {

test("SPARK-8357 Memory leakage on unsafe aggregation path with empty input") {

val input0 = Seq.empty[(String, Int, Double)]
// in the case of needEmptyBufferForwarded=true, task makes a row from empty buffer
// even with empty input. And current default parallelism of SparkPlanTest is two (local[2])
val x0 = Seq(Tuple1(0L), Tuple1(0L))
val y0 = Seq.empty[Tuple1[Long]]

val input1 = Seq(("Hello", 4, 2.0))
val x1 = Seq(Tuple1(0L), Tuple1(1L))
val y1 = Seq(Tuple1(1L))

val codegenDefault = TestSQLContext.getConf(SQLConf.CODEGEN_ENABLED)
TestSQLContext.setConf(SQLConf.CODEGEN_ENABLED, true)
try {
for ((input, x, y) <- Seq((input0, x0, y0), (input1, x1, y1))) {
val df = input.toDF("a", "b", "c")
val colB = df.col("b").expr
val colC = df.col("c").expr
val aggrExpr = Alias(Count(Cast(colC, LongType)), "Count")()

for (partial <- Seq(false, true); groupExpr <- Seq(Seq(colB), Seq.empty)) {
val aggregate = GeneratedAggregate(partial, groupExpr, Seq(aggrExpr), true, _: SparkPlan)
checkAnswer(df,
aggregate,
if (aggregate(null).needEmptyBufferForwarded) x else y)
}
}
} finally {
TestSQLContext.setConf(SQLConf.CODEGEN_ENABLED, codegenDefault)
}
}
}