Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,6 @@ object VectorAssembler {
case o =>
throw new SparkException(s"$o of type ${o.getClass.getName} is not supported.")
}
Vectors.sparse(cur, indices.result(), values.result())
Vectors.sparse(cur, indices.result(), values.result()).compressed
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ package org.apache.spark.ml.feature
import org.scalatest.FunSuite

import org.apache.spark.SparkException
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors}
import org.apache.spark.mllib.util.MLlibTestSparkContext
import org.apache.spark.sql.{Row, SQLContext}

Expand Down Expand Up @@ -48,6 +48,14 @@ class VectorAssemblerSuite extends FunSuite with MLlibTestSparkContext {
}
}

test("assemble should compress vectors") {
import org.apache.spark.ml.feature.VectorAssembler.assemble
val v1 = assemble(0.0, 0.0, 0.0, Vectors.dense(4.0))
assert(v1.isInstanceOf[SparseVector])
val v2 = assemble(1.0, 2.0, 3.0, Vectors.sparse(1, Array(0), Array(4.0)))
assert(v2.isInstanceOf[DenseVector])
}

test("VectorAssembler") {
val df = sqlContext.createDataFrame(Seq(
(0, 0.0, Vectors.dense(1.0, 2.0), "a", Vectors.sparse(2, Array(1), Array(3.0)), 10L)
Expand Down
6 changes: 3 additions & 3 deletions python/pyspark/ml/feature.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,12 +121,12 @@ class VectorAssembler(JavaTransformer, HasInputCols, HasOutputCol):
>>> df = sc.parallelize([Row(a=1, b=0, c=3)]).toDF()
>>> vecAssembler = VectorAssembler(inputCols=["a", "b", "c"], outputCol="features")
>>> vecAssembler.transform(df).head().features
SparseVector(3, {0: 1.0, 2: 3.0})
DenseVector([1.0, 0.0, 3.0])
>>> vecAssembler.setParams(outputCol="freqs").transform(df).head().freqs
SparseVector(3, {0: 1.0, 2: 3.0})
DenseVector([1.0, 0.0, 3.0])
>>> params = {vecAssembler.inputCols: ["b", "a"], vecAssembler.outputCol: "vector"}
>>> vecAssembler.transform(df, params).head().vector
SparseVector(2, {1: 1.0})
DenseVector([0.0, 1.0])
"""

_java_class = "org.apache.spark.ml.feature.VectorAssembler"
Expand Down