Skip to content
54 changes: 54 additions & 0 deletions docs/mllib-feature-extraction.md
Original file line number Diff line number Diff line change
Expand Up @@ -477,3 +477,57 @@ sc.stop();
</div>
</div>

## ElementwiseProduct

ElementwiseProduct multiplies each input vector by a provided "weight" vector, using element-wise multiplication. In other words, it scales each column of the dataset by a scalar multiplier. This represents the [Hadamard product](https://en.wikipedia.org/wiki/Hadamard_product_%28matrices%29) between the input vector, `v` and transforming vector, `w`, to yield a result vector.

`\[ \begin{pmatrix}
v_1 \\
\vdots \\
v_N
\end{pmatrix} \circ \begin{pmatrix}
w_1 \\
\vdots \\
w_N
\end{pmatrix}
= \begin{pmatrix}
v_1 w_1 \\
\vdots \\
v_N w_N
\end{pmatrix}
\]`

[`ElementwiseProduct`](api/scala/index.html#org.apache.spark.mllib.feature.ElementwiseProduct) has the following parameter in the constructor:

* `w`: the transforming vector.

`ElementwiseProduct` implements [`VectorTransformer`](api/scala/index.html#org.apache.spark.mllib.feature.VectorTransformer) which can apply the weighting on a `Vector` to produce a transformed `Vector` or on an `RDD[Vector]` to produce a transformed `RDD[Vector]`.

### Example

This example below demonstrates how to load a simple vectors file, extract a set of vectors, then transform those vectors using a transforming vector value.


<div class="codetabs">
<div data-lang="scala">
{% highlight scala %}
import org.apache.spark.SparkContext._
import org.apache.spark.mllib.feature.ElementwiseProduct
import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data:
val data = sc.textFile("data/mllib/kmeans_data.txt")
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble)))

val transformingVector = Vectors.dense(0.0, 1.0, 2.0)
val transformer = new ElementwiseProduct(transformingVector)

// Batch transform and per-row transform give the same results:
val transformedData = transformer.transform(parsedData)
val transformedData2 = parsedData.map(x => transformer.transform(x))

{% endhighlight %}
</div>
</div>


Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.feature

import org.apache.spark.annotation.AlphaComponent
import org.apache.spark.ml.UnaryTransformer
import org.apache.spark.ml.param.Param
import org.apache.spark.mllib.feature
import org.apache.spark.mllib.linalg.{Vector, VectorUDT}
import org.apache.spark.sql.types.DataType

/**
* :: AlphaComponent ::
* Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a
* provided "weight" vector. In other words, it scales each column of the dataset by a scalar
* multiplier.
*/
@AlphaComponent
class ElementwiseProduct extends UnaryTransformer[Vector, Vector, ElementwiseProduct] {

/**
* the vector to multiply with input vectors
* @group param
*/
val scalingVec: Param[Vector] = new Param(this, "scalingVector", "vector for hadamard product")

/** @group setParam */
def setScalingVec(value: Vector): this.type = set(scalingVec, value)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add tag: @group setParam


/** @group getParam */
def getScalingVec: Vector = getOrDefault(scalingVec)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add tag: @group getParam


override protected def createTransformFunc: Vector => Vector = {
require(params.contains(scalingVec), s"transformation requires a weight vector")
val elemScaler = new feature.ElementwiseProduct($(scalingVec))
elemScaler.transform
}

override protected def outputDataType: DataType = new VectorUDT()
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.feature

import org.apache.spark.annotation.Experimental
import org.apache.spark.mllib.linalg._

/**
* :: Experimental ::
* Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a
* provided "weight" vector. In other words, it scales each column of the dataset by a scalar
* multiplier.
* @param scalingVector The values used to scale the reference vector's individual components.
*/
@Experimental
class ElementwiseProduct(val scalingVector: Vector) extends VectorTransformer {

/**
* Does the hadamard product transformation.
*
* @param vector vector to be transformed.
* @return transformed vector.
*/
override def transform(vector: Vector): Vector = {
require(vector.size == scalingVector.size,
s"vector sizes do not match: Expected ${scalingVector.size} but found ${vector.size}")
vector match {
case dv: DenseVector =>
val values: Array[Double] = dv.values.clone()
val dim = scalingVector.size
var i = 0
while (i < dim) {
values(i) *= scalingVector(i)
i += 1
}
Vectors.dense(values)
case SparseVector(size, indices, vs) =>
val values = vs.clone()
val dim = values.length
var i = 0
while (i < dim) {
values(i) *= scalingVector(indices(i))
i += 1
}
Vectors.sparse(size, indices, values)
case v => throw new IllegalArgumentException("Does not support vector type " + v.getClass)
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.feature

import org.scalatest.FunSuite
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please organize imports: Put non-Spark imports before Spark ones, with a blank line in between


import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vectors}
import org.apache.spark.mllib.util.MLlibTestSparkContext
import org.apache.spark.mllib.util.TestingUtils._

class ElementwiseProductSuite extends FunSuite with MLlibTestSparkContext {

test("elementwise (hadamard) product should properly apply vector to dense data set") {
val denseData = Array(
Vectors.dense(1.0, 4.0, 1.9, -9.0)
)
val scalingVec = Vectors.dense(2.0, 0.5, 0.0, 0.25)
val transformer = new ElementwiseProduct(scalingVec)
val transformedData = transformer.transform(sc.makeRDD(denseData))
val transformedVecs = transformedData.collect()
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

collect() isn't guaranteed to return data in the same order. I'd recommend testing using per-row transform(); transforming RDDs is already tested elsewhere since you're using the VectorTransformer abstraction.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oops, I was confused. (There's only 1 element...)

val transformedVec = transformedVecs(0)
val expectedVec = Vectors.dense(2.0, 2.0, 0.0, -2.25)
assert(transformedVec ~== expectedVec absTol 1E-5,
s"Expected transformed vector $expectedVec but found $transformedVec")
}

test("elementwise (hadamard) product should properly apply vector to sparse data set") {
val sparseData = Array(
Vectors.sparse(3, Seq((1, -1.0), (2, -3.0)))
)
val dataRDD = sc.parallelize(sparseData, 3)
val scalingVec = Vectors.dense(1.0, 0.0, 0.5)
val transformer = new ElementwiseProduct(scalingVec)
val data2 = sparseData.map(transformer.transform)
val data2RDD = transformer.transform(dataRDD)

assert((sparseData, data2, data2RDD.collect()).zipped.forall {
case (v1: DenseVector, v2: DenseVector, v3: DenseVector) => true
case (v1: SparseVector, v2: SparseVector, v3: SparseVector) => true
case _ => false
}, "The vector type should be preserved after hadamard product")

assert((data2, data2RDD.collect()).zipped.forall((v1, v2) => v1 ~== v2 absTol 1E-5))
assert(data2(0) ~== Vectors.sparse(3, Seq((1, 0.0), (2, -1.5))) absTol 1E-5)
}
}