[SPARK-5089][PYSPARK][MLLIB] Fix vector convert #3902
Closed
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This is a small change addressing a potentially significant bug in how PySpark + MLlib handles non-float64 numpy arrays. The automatic conversion to
DenseVectorthat occurs when passing RDDs to MLlib algorithms in PySpark should automatically upcast to float64s, but currently this wasn't actually happening. As a result, non-float64 would be silently parsed inappropriately during SerDe, yielding erroneous results when running, for example, KMeans.The PR includes the fix, as well as a new test for the correct conversion behavior.
@davies