Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml

import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.examples.mllib.AbstractParams
import org.apache.spark.ml.recommendation.ALS
import org.apache.spark.sql.{Row, SQLContext}

/**
* An example app for ALS on MovieLens data (http://grouplens.org/datasets/movielens/).
* Run with
* {{{
* bin/run-example ml.MovieLensALS
* }}}
*/
object MovieLensALS {

case class Rating(userId: Int, movieId: Int, rating: Float, timestamp: Long)

object Rating {
def parseRating(str: String): Rating = {
val fields = str.split("::")
assert(fields.size == 4)
Rating(fields(0).toInt, fields(1).toInt, fields(2).toFloat, fields(3).toLong)
}
}

case class Movie(movieId: Int, title: String, genres: Seq[String])

object Movie {
def parseMovie(str: String): Movie = {
val fields = str.split("::")
assert(fields.size == 3)
Movie(fields(0).toInt, fields(1), fields(2).split("|"))
}
}

case class Params(
ratings: String = null,
movies: String = null,
maxIter: Int = 10,
regParam: Double = 0.1,
rank: Int = 10,
numBlocks: Int = 10) extends AbstractParams[Params]

def main(args: Array[String]) {
val defaultParams = Params()

val parser = new OptionParser[Params]("MovieLensALS") {
head("MovieLensALS: an example app for ALS on MovieLens data.")
opt[String]("ratings")
.required()
.text("path to a MovieLens dataset of ratings")
.action((x, c) => c.copy(ratings = x))
opt[String]("movies")
.required()
.text("path to a MovieLens dataset of movies")
.action((x, c) => c.copy(movies = x))
opt[Int]("rank")
.text(s"rank, default: ${defaultParams.rank}}")
.action((x, c) => c.copy(rank = x))
opt[Int]("maxIter")
.text(s"max number of iterations, default: ${defaultParams.maxIter}")
.action((x, c) => c.copy(maxIter = x))
opt[Double]("regParam")
.text(s"regularization parameter, default: ${defaultParams.regParam}")
.action((x, c) => c.copy(regParam = x))
opt[Int]("numBlocks")
.text(s"number of blocks, default: ${defaultParams.numBlocks}")
.action((x, c) => c.copy(numBlocks = x))
note(
"""
|Example command line to run this app:
|
| bin/spark-submit --class org.apache.spark.examples.ml.MovieLensALS \
| examples/target/scala-*/spark-examples-*.jar \
| --rank 10 --maxIter 15 --regParam 0.1 \
| --movies path/to/movielens/movies.dat \
| --ratings path/to/movielens/ratings.dat
""".stripMargin)
}

parser.parse(args, defaultParams).map { params =>
run(params)
} getOrElse {
System.exit(1)
}
}

def run(params: Params) {
val conf = new SparkConf().setAppName(s"MovieLensALS with $params")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext._

val ratings = sc.textFile(params.ratings).map(Rating.parseRating).cache()

val numRatings = ratings.count()
val numUsers = ratings.map(_.userId).distinct().count()
val numMovies = ratings.map(_.movieId).distinct().count()

println(s"Got $numRatings ratings from $numUsers users on $numMovies movies.")

val splits = ratings.randomSplit(Array(0.8, 0.2), 0L)
val training = splits(0).cache()
val test = splits(1).cache()

val numTraining = training.count()
val numTest = test.count()
println(s"Training: $numTraining, test: $numTest.")

ratings.unpersist(blocking = false)

val als = new ALS()
.setUserCol("userId")
.setItemCol("movieId")
.setRank(params.rank)
.setMaxIter(params.maxIter)
.setRegParam(params.regParam)
.setNumBlocks(params.numBlocks)

val model = als.fit(training)

val predictions = model.transform(test).cache()

// Evaluate the model.
// TODO: Create an evaluator to compute RMSE.
val mse = predictions.select('rating, 'prediction)
.flatMap { case Row(rating: Float, prediction: Float) =>
val err = rating.toDouble - prediction
val err2 = err * err
if (err2.isNaN) {
None
} else {
Some(err2)
}
}.mean()
val rmse = math.sqrt(mse)
println(s"Test RMSE = $rmse.")

// Inspect false positives.
predictions.registerTempTable("prediction")
sc.textFile(params.movies).map(Movie.parseMovie).registerTempTable("movie")
sqlContext.sql(
"""
|SELECT userId, prediction.movieId, title, rating, prediction
| FROM prediction JOIN movie ON prediction.movieId = movie.movieId
| WHERE rating <= 1 AND prediction >= 4
| LIMIT 100
""".stripMargin)
.collect()
.foreach(println)

sc.stop()
}
}
Loading