Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 152 additions & 0 deletions mllib/src/main/scala/org/apache/spark/mllib/linalg/MatrixAlgebra.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.linalg

import org.apache.spark.rdd.RDD

import org.jblas.DoubleMatrix

/**
* Efficient matrix operations.
*/
object MatrixAlgebra {
/**
* Given matrix, compute squares of column magnitudes
* @param matrix given row-by-row, each row an array
* @return an array of squared column magnitudes
*/
def columnMagnitudes(matrix: RDD[Array[Double]]):
Array[Double] = {
val n = matrix.first.size
matrix.map {
x =>
val a = new DoubleMatrix(x)
a.mul(a).data
}.fold(Array.ofDim[Double](n)) {
(a, b) =>
val am = new DoubleMatrix(a)
val bm = new DoubleMatrix(b)
am.addi(bm)
a
}
}

/**
* Given a matrix A, compute A^T A using the sampling procedure
* described in http://arxiv.org/abs/1304.1467
* @param matrix given row-by-row, each row an array
* @param colMags Euclidean column magnitudes squared
* @param gamma The oversampling parameter, should be set to greater than 1,
* guideline is 2 log(n)
* @return Computed A^T A
*/
def squareWithDIMSUM(matrix: RDD[Array[Double]], colMags: Array[Double], gamma: Double):
Array[Array[Double]] = {
val n = matrix.first.size

if (gamma < 1) {
throw new IllegalArgumentException("Oversampling should be greater than 1: $gamma")
}

// Compute A^T A
val fullATA = matrix.mapPartitions {
iter =>
val localATA = Array.ofDim[Double](n, n)
while (iter.hasNext) {
val row = iter.next()
var i = 0
while (i < n) {
if (Math.random < gamma / colMags(i)) {
var j = i + 1
while (j < n) {
val mult = row(i) * row(j)
localATA(i)(j) += mult
localATA(j)(i) += mult
j += 1
}
}
i += 1
}
}
Iterator(localATA)
}.fold(Array.ofDim[Double](n, n)) {
(a, b) =>
var i = 0
while (i < n) {
var j = 0
while (j < n) {
a(i)(j) += b(i)(j)
j += 1
}
i += 1
}
a
}

// undo normalization
for (i <- 0 until n) for (j <- i until n) {
fullATA(i)(j) = if (i == j) colMags(i)
else if (gamma / colMags(i) > 1) fullATA(i)(j)
else fullATA(i)(j) * colMags(i) / gamma
fullATA(j)(i) = fullATA(i)(j)
}

fullATA
}

/**
* Given a matrix A, compute A^T A
* @param matrix given row-by-row, each row an array
* @return Computed A^T A
*/
def square(matrix: RDD[Array[Double]]): Array[Array[Double]] = {
val n = matrix.first.size

// Compute A^T A
val fullATA = matrix.mapPartitions {
iter =>
val localATA = Array.ofDim[Double](n, n)
while (iter.hasNext) {
val row = iter.next()
var i = 0
while (i < n) {
var j = 0
while (j < n) {
localATA(i)(j) += row(i) * row(j)
j += 1
}
i += 1
}
}
Iterator(localATA)
}.fold(Array.ofDim[Double](n, n)) {
(a, b) =>
var i = 0
while (i < n) {
var j = 0
while (j < n) {
a(i)(j) += b(i)(j)
j += 1
}
i += 1
}
a
}
fullATA
}
}
51 changes: 22 additions & 29 deletions mllib/src/main/scala/org/apache/spark/mllib/linalg/SVD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,11 @@ class SVD {
// are treated as zero, where sigma(0) is the largest singular value.
private var rCond = 1e-9

// Flag for using DIMSUM in A^TA computation
// See http://arxiv.org/abs/1304.1467
private var useDIMS = false
private var gamma = 10.0

/**
* Set the number of top-k singular vectors to return
*/
Expand All @@ -60,6 +65,17 @@ class SVD {
this
}

/**
* Use DIMSUM be used for computing A^TA with gamma
* See http://arxiv.org/abs/1304.1467
*/
def useDIMSUM(gamma: Double): SVD = {
this.useDIMS = true
this.gamma = gamma
this
}


/**
* Compute SVD using the current set parameters
*/
Expand Down Expand Up @@ -183,38 +199,15 @@ class SVD {
}

// Compute A^T A
val fullata = matrix.mapPartitions {
iter =>
val localATA = Array.ofDim[Double](n, n)
while (iter.hasNext) {
val row = iter.next()
var i = 0
while (i < n) {
var j = 0
while (j < n) {
localATA(i)(j) += row(i) * row(j)
j += 1
}
i += 1
}
}
Iterator(localATA)
}.fold(Array.ofDim[Double](n, n)) {
(a, b) =>
var i = 0
while (i < n) {
var j = 0
while (j < n) {
a(i)(j) += b(i)(j)
j += 1
}
i += 1
}
a
val fullATA = if (useDIMS) {
MatrixAlgebra.squareWithDIMSUM(
matrix, MatrixAlgebra.columnMagnitudes(matrix), gamma)
} else {
MatrixAlgebra.square(matrix)
}

// Construct jblas A^T A locally
val ata = new DoubleMatrix(fullata)
val ata = new DoubleMatrix(fullATA)

// Since A^T A is small, we can compute its SVD directly
val svd = Singular.sparseSVD(ata)
Expand Down
30 changes: 30 additions & 0 deletions mllib/src/test/scala/org/apache/spark/mllib/linalg/SVDSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -191,4 +191,34 @@ class SVDSuite extends FunSuite with BeforeAndAfterAll {
assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1).getRow(0)))
assertMatrixApproximatelyEquals(retv, svd(2).getColumn(0))
}

test("square matrix with DIMSUM") {
val m = 10
val n = 3
val datarr = Array.tabulate(m,n){ (a, b) =>
MatrixEntry(a, b, (a + 2).toDouble * (b + 1) / (1 + a + b)) }.flatten
val data = sc.makeRDD(datarr, 3)

val a = LAUtils.sparseToTallSkinnyDense(SparseMatrix(data, m, n))

val decomposed = new SVD().setK(n).setComputeU(true).useDIMSUM(40.0).compute(a)
val u = LAUtils.denseToSparse(decomposed.U)
val v = decomposed.V
val s = decomposed.S

val denseA = getDenseMatrix(LAUtils.denseToSparse(a))
val svd = Singular.sparseSVD(denseA)

val retu = getDenseMatrix(u)
val rets = DoubleMatrix.diag(new DoubleMatrix(s))
val retv = new DoubleMatrix(v)

// check individual decomposition
assertMatrixApproximatelyEquals(retu, svd(0))
assertMatrixApproximatelyEquals(rets, DoubleMatrix.diag(svd(1)))
assertMatrixApproximatelyEquals(retv, svd(2))

// check multiplication guarantee
assertMatrixApproximatelyEquals(retu.mmul(rets).mmul(retv.transpose), denseA)
}
}