Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -22,19 +22,19 @@ import org.apache.spark.internal.Logging
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.stat.{MultivariateOnlineSummarizer, MultivariateStatisticalSummary}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.{DataFrame, Row}

/**
* Evaluator for regression.
*
* @param predAndObsWithOptWeight an RDD of either (prediction, observation, weight)
* @param predictionAndObservations an RDD of either (prediction, observation, weight)
* or (prediction, observation) pairs
* @param throughOrigin True if the regression is through the origin. For example, in linear
* regression, it will be true without fitting intercept.
*/
@Since("1.2.0")
class RegressionMetrics @Since("2.0.0") (
predAndObsWithOptWeight: RDD[_ <: Product], throughOrigin: Boolean)
predictionAndObservations: RDD[_ <: Product], throughOrigin: Boolean)
extends Logging {

@Since("1.2.0")
Expand All @@ -47,13 +47,20 @@ class RegressionMetrics @Since("2.0.0") (
* prediction and observation
*/
private[mllib] def this(predictionAndObservations: DataFrame) =
this(predictionAndObservations.rdd.map(r => (r.getDouble(0), r.getDouble(1))))
this(predictionAndObservations.rdd.map {
case Row(prediction: Double, label: Double, weight: Double) =>
(prediction, label, weight)
case Row(prediction: Double, label: Double) =>
(prediction, label, 1.0)
case other =>
throw new IllegalArgumentException(s"Expected Row of tuples, got $other")
})

/**
* Use MultivariateOnlineSummarizer to calculate summary statistics of observations and errors.
*/
private lazy val summary: MultivariateStatisticalSummary = {
val summary: MultivariateStatisticalSummary = predAndObsWithOptWeight.map {
val summary: MultivariateStatisticalSummary = predictionAndObservations.map {
case (prediction: Double, observation: Double, weight: Double) =>
(Vectors.dense(observation, observation - prediction), weight)
case (prediction: Double, observation: Double) =>
Expand All @@ -70,7 +77,7 @@ class RegressionMetrics @Since("2.0.0") (
private lazy val SStot = summary.variance(0) * (summary.weightSum - 1)
private lazy val SSreg = {
val yMean = summary.mean(0)
predAndObsWithOptWeight.map {
predictionAndObservations.map {
case (prediction: Double, _: Double, weight: Double) =>
math.pow(prediction - yMean, 2) * weight
case (prediction: Double, _: Double) => math.pow(prediction - yMean, 2)
Expand Down
21 changes: 14 additions & 7 deletions python/pyspark/ml/evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,13 +190,13 @@ def setParams(self, rawPredictionCol="rawPrediction", labelCol="label",


@inherit_doc
class RegressionEvaluator(JavaEvaluator, HasLabelCol, HasPredictionCol,
class RegressionEvaluator(JavaEvaluator, HasLabelCol, HasPredictionCol, HasWeightCol,
JavaMLReadable, JavaMLWritable):
"""
.. note:: Experimental

Evaluator for Regression, which expects two input
columns: prediction and label.
Evaluator for Regression, which expects input columns prediction, label
and an optional weight column.

>>> scoreAndLabels = [(-28.98343821, -27.0), (20.21491975, 21.5),
... (-25.98418959, -22.0), (30.69731842, 33.0), (74.69283752, 71.0)]
Expand All @@ -214,6 +214,13 @@ class RegressionEvaluator(JavaEvaluator, HasLabelCol, HasPredictionCol,
>>> evaluator2 = RegressionEvaluator.load(re_path)
>>> str(evaluator2.getPredictionCol())
'raw'
>>> scoreAndLabelsAndWeight = [(-28.98343821, -27.0, 1.0), (20.21491975, 21.5, 0.8),
... (-25.98418959, -22.0, 1.0), (30.69731842, 33.0, 0.6), (74.69283752, 71.0, 0.2)]
>>> dataset = spark.createDataFrame(scoreAndLabelsAndWeight, ["raw", "label", "weight"])
...
>>> evaluator = RegressionEvaluator(predictionCol="raw", weightCol="weight")
>>> evaluator.evaluate(dataset)
2.740...

.. versionadded:: 1.4.0
"""
Expand All @@ -227,10 +234,10 @@ class RegressionEvaluator(JavaEvaluator, HasLabelCol, HasPredictionCol,

@keyword_only
def __init__(self, predictionCol="prediction", labelCol="label",
metricName="rmse"):
metricName="rmse", weightCol=None):
"""
__init__(self, predictionCol="prediction", labelCol="label", \
metricName="rmse")
metricName="rmse", weightCol=None)
"""
super(RegressionEvaluator, self).__init__()
self._java_obj = self._new_java_obj(
Expand All @@ -256,10 +263,10 @@ def getMetricName(self):
@keyword_only
@since("1.4.0")
def setParams(self, predictionCol="prediction", labelCol="label",
metricName="rmse"):
metricName="rmse", weightCol=None):
"""
setParams(self, predictionCol="prediction", labelCol="label", \
metricName="rmse")
metricName="rmse", weightCol=None)
Sets params for regression evaluator.
"""
kwargs = self._input_kwargs
Expand Down
16 changes: 12 additions & 4 deletions python/pyspark/mllib/evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,8 +95,7 @@ class RegressionMetrics(JavaModelWrapper):
"""
Evaluator for regression.

:param predictionAndObservations: an RDD of (prediction,
observation) pairs.
:param predictionAndObservations: an RDD of prediction, observation and optional weight.

>>> predictionAndObservations = sc.parallelize([
... (2.5, 3.0), (0.0, -0.5), (2.0, 2.0), (8.0, 7.0)])
Expand All @@ -111,16 +110,25 @@ class RegressionMetrics(JavaModelWrapper):
0.61...
>>> metrics.r2
0.94...
>>> predictionAndObservationsWithOptWeight = sc.parallelize([
... (2.5, 3.0, 0.5), (0.0, -0.5, 1.0), (2.0, 2.0, 0.3), (8.0, 7.0, 0.9)])
>>> metrics = RegressionMetrics(predictionAndObservationsWithOptWeight)
>>> metrics.rootMeanSquaredError
0.68...

.. versionadded:: 1.4.0
"""

def __init__(self, predictionAndObservations):
sc = predictionAndObservations.ctx
sql_ctx = SQLContext.getOrCreate(sc)
df = sql_ctx.createDataFrame(predictionAndObservations, schema=StructType([
numCol = len(predictionAndObservations.first())
schema = StructType([
StructField("prediction", DoubleType(), nullable=False),
StructField("observation", DoubleType(), nullable=False)]))
StructField("observation", DoubleType(), nullable=False)])
if numCol == 3:
schema.add("weight", DoubleType(), False)
df = sql_ctx.createDataFrame(predictionAndObservations, schema=schema)
java_class = sc._jvm.org.apache.spark.mllib.evaluation.RegressionMetrics
java_model = java_class(df._jdf)
super(RegressionMetrics, self).__init__(java_model)
Expand Down