Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@ import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.api.java.{JavaRDD, JavaSparkContext}
import org.apache.spark.mllib.classification._
import org.apache.spark.mllib.clustering._
import org.apache.spark.mllib.feature.Word2Vec
import org.apache.spark.mllib.feature.Word2VecModel
import org.apache.spark.mllib.optimization._
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.random.{RandomRDDs => RG}
Expand All @@ -42,9 +44,9 @@ import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics}
import org.apache.spark.mllib.stat.correlation.CorrelationNames
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.util.Utils


/**
* :: DeveloperApi ::
* The Java stubs necessary for the Python mllib bindings.
Expand Down Expand Up @@ -287,6 +289,59 @@ class PythonMLLibAPI extends Serializable {
ALS.trainImplicit(ratingsJRDD.rdd, rank, iterations, lambda, blocks, alpha)
}

/**
* Java stub for Python mllib Word2Vec fit(). This stub returns a
* handle to the Java object instead of the content of the Java object.
* Extra care needs to be taken in the Python code to ensure it gets freed on
* exit; see the Py4J documentation.
* @param dataJRDD input JavaRDD
* @param vectorSize size of vector
* @param learningRate initial learning rate
* @param numPartitions number of partitions
* @param numIterations number of iterations
* @param seed initial seed for random generator
* @return A handle to java Word2VecModelWrapper instance at python side
*/
def trainWord2Vec(
dataJRDD: JavaRDD[java.util.ArrayList[String]],
vectorSize: Int,
learningRate: Double,
numPartitions: Int,
numIterations: Int,
seed: Long): Word2VecModelWrapper = {
val data = dataJRDD.rdd.persist(StorageLevel.MEMORY_AND_DISK_SER)
val word2vec = new Word2Vec()
.setVectorSize(vectorSize)
.setLearningRate(learningRate)
.setNumPartitions(numPartitions)
.setNumIterations(numIterations)
.setSeed(seed)
val model = word2vec.fit(data)
data.unpersist()
new Word2VecModelWrapper(model)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

unpersist data after training explicitly because the user won't have access to it.

}

private[python] class Word2VecModelWrapper(model: Word2VecModel) {
def transform(word: String): Vector = {
model.transform(word)
}

def findSynonyms(word: String, num: Int): java.util.List[java.lang.Object] = {
val vec = transform(word)
findSynonyms(vec, num)
}

def findSynonyms(vector: Vector, num: Int): java.util.List[java.lang.Object] = {
val result = model.findSynonyms(vector, num)
val similarity = Vectors.dense(result.map(_._2))
val words = result.map(_._1)
val ret = new java.util.LinkedList[java.lang.Object]()
ret.add(words)
ret.add(similarity)
ret
}
}

/**
* Java stub for Python mllib DecisionTree.train().
* This stub returns a handle to the Java object instead of the content of the Java object.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ private case class VocabWord(
class Word2Vec extends Serializable with Logging {

private var vectorSize = 100
private var startingAlpha = 0.025
private var learningRate = 0.025
private var numPartitions = 1
private var numIterations = 1
private var seed = Utils.random.nextLong()
Expand All @@ -84,7 +84,7 @@ class Word2Vec extends Serializable with Logging {
* Sets initial learning rate (default: 0.025).
*/
def setLearningRate(learningRate: Double): this.type = {
this.startingAlpha = learningRate
this.learningRate = learningRate
this
}

Expand Down Expand Up @@ -286,7 +286,7 @@ class Word2Vec extends Serializable with Logging {
val syn0Global =
Array.fill[Float](vocabSize * vectorSize)((initRandom.nextFloat() - 0.5f) / vectorSize)
val syn1Global = new Array[Float](vocabSize * vectorSize)
var alpha = startingAlpha
var alpha = learningRate
for (k <- 1 to numIterations) {
val partial = newSentences.mapPartitionsWithIndex { case (idx, iter) =>
val random = new XORShiftRandom(seed ^ ((idx + 1) << 16) ^ ((-k - 1) << 8))
Expand All @@ -300,8 +300,8 @@ class Word2Vec extends Serializable with Logging {
lwc = wordCount
// TODO: discount by iteration?
alpha =
startingAlpha * (1 - numPartitions * wordCount.toDouble / (trainWordsCount + 1))
if (alpha < startingAlpha * 0.0001) alpha = startingAlpha * 0.0001
learningRate * (1 - numPartitions * wordCount.toDouble / (trainWordsCount + 1))
if (alpha < learningRate * 0.0001) alpha = learningRate * 0.0001
logInfo("wordCount = " + wordCount + ", alpha = " + alpha)
}
wc += sentence.size
Expand Down Expand Up @@ -437,7 +437,7 @@ class Word2VecModel private[mllib] (
* Find synonyms of a word
* @param word a word
* @param num number of synonyms to find
* @return array of (word, similarity)
* @return array of (word, cosineSimilarity)
*/
def findSynonyms(word: String, num: Int): Array[(String, Double)] = {
val vector = transform(word)
Expand Down
8 changes: 8 additions & 0 deletions python/docs/pyspark.mllib.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,14 @@ pyspark.mllib.clustering module
:undoc-members:
:show-inheritance:

pyspark.mllib.feature module
-------------------------------

.. automodule:: pyspark.mllib.feature
:members:
:undoc-members:
:show-inheritance:

pyspark.mllib.linalg module
---------------------------

Expand Down
193 changes: 193 additions & 0 deletions python/pyspark/mllib/feature.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Python package for feature in MLlib.
"""
from pyspark.serializers import PickleSerializer, AutoBatchedSerializer

from pyspark.mllib.linalg import _convert_to_vector

__all__ = ['Word2Vec', 'Word2VecModel']


class Word2VecModel(object):
"""
class for Word2Vec model
"""
def __init__(self, sc, java_model):
"""
:param sc: Spark context
:param java_model: Handle to Java model object
"""
self._sc = sc
self._java_model = java_model

def __del__(self):
self._sc._gateway.detach(self._java_model)

def transform(self, word):
"""
:param word: a word
:return: vector representation of word
Transforms a word to its vector representation

Note: local use only
"""
# TODO: make transform usable in RDD operations from python side
result = self._java_model.transform(word)
return PickleSerializer().loads(str(self._sc._jvm.SerDe.dumps(result)))

def findSynonyms(self, x, num):
"""
:param x: a word or a vector representation of word
:param num: number of synonyms to find
:return: array of (word, cosineSimilarity)
Find synonyms of a word

Note: local use only
"""
# TODO: make findSynonyms usable in RDD operations from python side
ser = PickleSerializer()
if type(x) == str:
jlist = self._java_model.findSynonyms(x, num)
else:
bytes = bytearray(ser.dumps(_convert_to_vector(x)))
vec = self._sc._jvm.SerDe.loads(bytes)
jlist = self._java_model.findSynonyms(vec, num)
words, similarity = ser.loads(str(self._sc._jvm.SerDe.dumps(jlist)))
return zip(words, similarity)


class Word2Vec(object):
"""
Word2Vec creates vector representation of words in a text corpus.
The algorithm first constructs a vocabulary from the corpus
and then learns vector representation of words in the vocabulary.
The vector representation can be used as features in
natural language processing and machine learning algorithms.

We used skip-gram model in our implementation and hierarchical softmax
method to train the model. The variable names in the implementation
matches the original C implementation.
For original C implementation, see https://code.google.com/p/word2vec/
For research papers, see
Efficient Estimation of Word Representations in Vector Space
and
Distributed Representations of Words and Phrases and their Compositionality.

>>> sentence = "a b " * 100 + "a c " * 10
>>> localDoc = [sentence, sentence]
>>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" "))
>>> model = Word2Vec().setVectorSize(10).setSeed(42L).fit(doc)
>>> syms = model.findSynonyms("a", 2)
>>> str(syms[0][0])
'b'
>>> str(syms[1][0])
'c'
>>> len(syms)
2
>>> vec = model.transform("a")
>>> len(vec)
10
>>> syms = model.findSynonyms(vec, 2)
>>> str(syms[0][0])
'b'
>>> str(syms[1][0])
'c'
>>> len(syms)
2
"""
def __init__(self):
"""
Construct Word2Vec instance
"""
self.vectorSize = 100
self.learningRate = 0.025
self.numPartitions = 1
self.numIterations = 1
self.seed = 42L

def setVectorSize(self, vectorSize):
"""
Sets vector size (default: 100).
"""
self.vectorSize = vectorSize
return self

def setLearningRate(self, learningRate):
"""
Sets initial learning rate (default: 0.025).
"""
self.learningRate = learningRate
return self

def setNumPartitions(self, numPartitions):
"""
Sets number of partitions (default: 1). Use a small number for accuracy.
"""
self.numPartitions = numPartitions
return self

def setNumIterations(self, numIterations):
"""
Sets number of iterations (default: 1), which should be smaller than or equal to number of
partitions.
"""
self.numIterations = numIterations
return self

def setSeed(self, seed):
"""
Sets random seed.
"""
self.seed = seed
return self

def fit(self, data):
"""
Computes the vector representation of each word in vocabulary.

:param data: training data. RDD of subtype of Iterable[String]
:return: python Word2VecModel instance
"""
sc = data.context
ser = PickleSerializer()
vectorSize = self.vectorSize
learningRate = self.learningRate
numPartitions = self.numPartitions
numIterations = self.numIterations
seed = self.seed

model = sc._jvm.PythonMLLibAPI().trainWord2Vec(
data._to_java_object_rdd(), vectorSize,
learningRate, numPartitions, numIterations, seed)
return Word2VecModel(sc, model)


def _test():
import doctest
from pyspark import SparkContext
globs = globals().copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)

if __name__ == "__main__":
_test()
1 change: 1 addition & 0 deletions python/run-tests
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@ function run_mllib_tests() {
echo "Run mllib tests ..."
run_test "pyspark/mllib/classification.py"
run_test "pyspark/mllib/clustering.py"
run_test "pyspark/mllib/feature.py"
run_test "pyspark/mllib/linalg.py"
run_test "pyspark/mllib/random.py"
run_test "pyspark/mllib/recommendation.py"
Expand Down