Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -30,10 +30,9 @@ import org.apache.spark.sql.catalyst.expressions.UnsafeRow
import org.apache.spark.sql.kafka010.KafkaSourceProvider.{INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_FALSE, INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_TRUE}
import org.apache.spark.sql.sources.v2.reader._
import org.apache.spark.sql.sources.v2.reader.streaming._
import org.apache.spark.sql.types.StructType

/**
* A [[ContinuousReadSupport]] for data from kafka.
* A [[ContinuousInputStream]] that reads data from Kafka.
*
* @param offsetReader a reader used to get kafka offsets. Note that the actual data will be
* read by per-task consumers generated later.
Expand All @@ -46,17 +45,22 @@ import org.apache.spark.sql.types.StructType
* scenarios, where some offsets after the specified initial ones can't be
* properly read.
*/
class KafkaContinuousReadSupport(
class KafkaContinuousInputStream(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is it possible to break this change into multiple PRs for batch, microbatch, and continuous? It's really large and it would be nice if we could get the changes in incrementally.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

+1 for this. A lot of the changes right now are for moving around the streaming code especially, which makes it harder to isolate just the proposed API for review.

An alternative is to make this PR separate commits that, while the commits themselves may not compile because of mismatching signatures - but all the commits taken together would compile, and each commit can be reviewed individually for assessing the API and then the implementation.

For example I'd propose 3 PRs:

  • Batch reading, with a commit for the interface changes and a separate commit for the implementation changes
  • Micro Batch Streaming read, with a commit for the interface changes and a separate commit for the implementation changes
  • Continuous streaming read, similar to above

Thoughts?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'd prefer that the commits themselves compile, but since this is separating the modes I think it could be done incrementally.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Makes sense. I really consider this to be a blocker on getting this merged and approved. It's difficult to have confidence in a review over such a large change. Thoughts @cloud-fan @rdblue?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yea I'll separate this PR into 3 smaller ones, after we have agreed on the high-level design at https://docs.google.com/document/d/1uUmKCpWLdh9vHxP7AWJ9EgbwB_U6T3EJYNjhISGmiQg/edit?usp=sharing

offsetReader: KafkaOffsetReader,
kafkaParams: ju.Map[String, Object],
sourceOptions: Map[String, String],
metadataPath: String,
initialOffsets: KafkaOffsetRangeLimit,
failOnDataLoss: Boolean)
extends ContinuousReadSupport with Logging {
extends ContinuousInputStream with Logging {

private val pollTimeoutMs = sourceOptions.getOrElse("kafkaConsumer.pollTimeoutMs", "512").toLong

// Initialized when creating read support. If this diverges from the partitions at the latest
// offsets, we need to reconfigure.
// Exposed outside this object only for unit tests.
@volatile private[sql] var knownPartitions: Set[TopicPartition] = _

override def initialOffset(): Offset = {
val offsets = initialOffsets match {
case EarliestOffsetRangeLimit => KafkaSourceOffset(offsetReader.fetchEarliestOffsets())
Expand All @@ -67,28 +71,29 @@ class KafkaContinuousReadSupport(
offsets
}

override def fullSchema(): StructType = KafkaOffsetReader.kafkaSchema

override def newScanConfigBuilder(start: Offset): ScanConfigBuilder = {
new KafkaContinuousScanConfigBuilder(fullSchema(), start, offsetReader, reportDataLoss)
}

override def deserializeOffset(json: String): Offset = {
KafkaSourceOffset(JsonUtils.partitionOffsets(json))
}

override def planInputPartitions(config: ScanConfig): Array[InputPartition] = {
val startOffsets = config.asInstanceOf[KafkaContinuousScanConfig].startOffsets
startOffsets.toSeq.map {
case (topicPartition, start) =>
KafkaContinuousInputPartition(
topicPartition, start, kafkaParams, pollTimeoutMs, failOnDataLoss)
}.toArray
}
override def createContinuousScan(start: Offset): ContinuousScan = {
val oldStartPartitionOffsets = KafkaSourceOffset.getPartitionOffsets(start)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.


override def createContinuousReaderFactory(
config: ScanConfig): ContinuousPartitionReaderFactory = {
KafkaContinuousReaderFactory
val currentPartitionSet = offsetReader.fetchEarliestOffsets().keySet
val newPartitions = currentPartitionSet.diff(oldStartPartitionOffsets.keySet)
val newPartitionOffsets = offsetReader.fetchEarliestOffsets(newPartitions.toSeq)

val deletedPartitions = oldStartPartitionOffsets.keySet.diff(currentPartitionSet)
if (deletedPartitions.nonEmpty) {
reportDataLoss(s"Some partitions were deleted: $deletedPartitions")
}

val startOffsets = newPartitionOffsets ++
oldStartPartitionOffsets.filterKeys(!deletedPartitions.contains(_))

knownPartitions = startOffsets.keySet

new KafkaContinuousScan(
offsetReader, kafkaParams, pollTimeoutMs, failOnDataLoss, startOffsets)
}

/** Stop this source and free any resources it has allocated. */
Expand All @@ -105,9 +110,8 @@ class KafkaContinuousReadSupport(
KafkaSourceOffset(mergedMap)
}

override def needsReconfiguration(config: ScanConfig): Boolean = {
val knownPartitions = config.asInstanceOf[KafkaContinuousScanConfig].knownPartitions
offsetReader.fetchLatestOffsets().keySet != knownPartitions
override def needsReconfiguration(): Boolean = {
knownPartitions != null && offsetReader.fetchLatestOffsets().keySet != knownPartitions
}

override def toString(): String = s"KafkaSource[$offsetReader]"
Expand All @@ -125,6 +129,25 @@ class KafkaContinuousReadSupport(
}
}

class KafkaContinuousScan(
offsetReader: KafkaOffsetReader,
kafkaParams: ju.Map[String, Object],
pollTimeoutMs: Long,
failOnDataLoss: Boolean,
startOffsets: Map[TopicPartition, Long]) extends ContinuousScan {

override def createContinuousReaderFactory(): ContinuousPartitionReaderFactory = {
KafkaContinuousReaderFactory
}

override def planInputPartitions(): Array[InputPartition] = {
startOffsets.toSeq.map { case (topicPartition, start) =>
KafkaContinuousInputPartition(
topicPartition, start, kafkaParams, pollTimeoutMs, failOnDataLoss)
}.toArray
}
}

/**
* An input partition for continuous Kafka processing. This will be serialized and transformed
* into a full reader on executors.
Expand All @@ -151,41 +174,6 @@ object KafkaContinuousReaderFactory extends ContinuousPartitionReaderFactory {
}
}

class KafkaContinuousScanConfigBuilder(
schema: StructType,
startOffset: Offset,
offsetReader: KafkaOffsetReader,
reportDataLoss: String => Unit)
extends ScanConfigBuilder {

override def build(): ScanConfig = {
val oldStartPartitionOffsets = KafkaSourceOffset.getPartitionOffsets(startOffset)

val currentPartitionSet = offsetReader.fetchEarliestOffsets().keySet
val newPartitions = currentPartitionSet.diff(oldStartPartitionOffsets.keySet)
val newPartitionOffsets = offsetReader.fetchEarliestOffsets(newPartitions.toSeq)

val deletedPartitions = oldStartPartitionOffsets.keySet.diff(currentPartitionSet)
if (deletedPartitions.nonEmpty) {
reportDataLoss(s"Some partitions were deleted: $deletedPartitions")
}

val startOffsets = newPartitionOffsets ++
oldStartPartitionOffsets.filterKeys(!deletedPartitions.contains(_))
KafkaContinuousScanConfig(schema, startOffsets)
}
}

case class KafkaContinuousScanConfig(
readSchema: StructType,
startOffsets: Map[TopicPartition, Long])
extends ScanConfig {

// Created when building the scan config builder. If this diverges from the partitions at the
// latest offsets, we need to reconfigure the kafka read support.
def knownPartitions: Set[TopicPartition] = startOffsets.keySet
}

/**
* A per-task data reader for continuous Kafka processing.
*
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,17 +29,16 @@ import org.apache.spark.scheduler.ExecutorCacheTaskLocation
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.UnsafeRow
import org.apache.spark.sql.execution.streaming.{HDFSMetadataLog, SerializedOffset, SimpleStreamingScanConfig, SimpleStreamingScanConfigBuilder}
import org.apache.spark.sql.execution.streaming.sources.RateControlMicroBatchReadSupport
import org.apache.spark.sql.execution.streaming.{HDFSMetadataLog, SerializedOffset}
import org.apache.spark.sql.execution.streaming.sources.RateControlMicroBatchInputStream
import org.apache.spark.sql.kafka010.KafkaSourceProvider.{INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_FALSE, INSTRUCTION_FOR_FAIL_ON_DATA_LOSS_TRUE}
import org.apache.spark.sql.sources.v2.DataSourceOptions
import org.apache.spark.sql.sources.v2.reader._
import org.apache.spark.sql.sources.v2.reader.streaming.{MicroBatchReadSupport, Offset}
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.sources.v2.reader.streaming.{MicroBatchInputStream, MicroBatchScan, Offset}
import org.apache.spark.util.UninterruptibleThread

/**
* A [[MicroBatchReadSupport]] that reads data from Kafka.
* A [[MicroBatchInputStream]] that reads data from Kafka.
*
* The [[KafkaSourceOffset]] is the custom [[Offset]] defined for this source that contains
* a map of TopicPartition -> offset. Note that this offset is 1 + (available offset). For
Expand All @@ -54,13 +53,13 @@ import org.apache.spark.util.UninterruptibleThread
* To avoid this issue, you should make sure stopping the query before stopping the Kafka brokers
* and not use wrong broker addresses.
*/
private[kafka010] class KafkaMicroBatchReadSupport(
private[kafka010] class KafkaMicroBatchInputStream(
kafkaOffsetReader: KafkaOffsetReader,
executorKafkaParams: ju.Map[String, Object],
options: DataSourceOptions,
metadataPath: String,
startingOffsets: KafkaOffsetRangeLimit,
failOnDataLoss: Boolean) extends RateControlMicroBatchReadSupport with Logging {
failOnDataLoss: Boolean) extends RateControlMicroBatchInputStream with Logging {

private val pollTimeoutMs = options.getLong(
"kafkaConsumer.pollTimeoutMs",
Expand Down Expand Up @@ -93,65 +92,16 @@ private[kafka010] class KafkaMicroBatchReadSupport(
endPartitionOffsets
}

override def fullSchema(): StructType = KafkaOffsetReader.kafkaSchema

override def newScanConfigBuilder(start: Offset, end: Offset): ScanConfigBuilder = {
new SimpleStreamingScanConfigBuilder(fullSchema(), start, Some(end))
}

override def planInputPartitions(config: ScanConfig): Array[InputPartition] = {
val sc = config.asInstanceOf[SimpleStreamingScanConfig]
val startPartitionOffsets = sc.start.asInstanceOf[KafkaSourceOffset].partitionToOffsets
val endPartitionOffsets = sc.end.get.asInstanceOf[KafkaSourceOffset].partitionToOffsets

// Find the new partitions, and get their earliest offsets
val newPartitions = endPartitionOffsets.keySet.diff(startPartitionOffsets.keySet)
val newPartitionInitialOffsets = kafkaOffsetReader.fetchEarliestOffsets(newPartitions.toSeq)
if (newPartitionInitialOffsets.keySet != newPartitions) {
// We cannot get from offsets for some partitions. It means they got deleted.
val deletedPartitions = newPartitions.diff(newPartitionInitialOffsets.keySet)
reportDataLoss(
s"Cannot find earliest offsets of ${deletedPartitions}. Some data may have been missed")
}
logInfo(s"Partitions added: $newPartitionInitialOffsets")
newPartitionInitialOffsets.filter(_._2 != 0).foreach { case (p, o) =>
reportDataLoss(
s"Added partition $p starts from $o instead of 0. Some data may have been missed")
}

// Find deleted partitions, and report data loss if required
val deletedPartitions = startPartitionOffsets.keySet.diff(endPartitionOffsets.keySet)
if (deletedPartitions.nonEmpty) {
reportDataLoss(s"$deletedPartitions are gone. Some data may have been missed")
}

// Use the end partitions to calculate offset ranges to ignore partitions that have
// been deleted
val topicPartitions = endPartitionOffsets.keySet.filter { tp =>
// Ignore partitions that we don't know the from offsets.
newPartitionInitialOffsets.contains(tp) || startPartitionOffsets.contains(tp)
}.toSeq
logDebug("TopicPartitions: " + topicPartitions.mkString(", "))

// Calculate offset ranges
val offsetRanges = rangeCalculator.getRanges(
fromOffsets = startPartitionOffsets ++ newPartitionInitialOffsets,
untilOffsets = endPartitionOffsets,
executorLocations = getSortedExecutorList())

// Reuse Kafka consumers only when all the offset ranges have distinct TopicPartitions,
// that is, concurrent tasks will not read the same TopicPartitions.
val reuseKafkaConsumer = offsetRanges.map(_.topicPartition).toSet.size == offsetRanges.size

// Generate factories based on the offset ranges
offsetRanges.map { range =>
KafkaMicroBatchInputPartition(
range, executorKafkaParams, pollTimeoutMs, failOnDataLoss, reuseKafkaConsumer)
}.toArray
}

override def createReaderFactory(config: ScanConfig): PartitionReaderFactory = {
KafkaMicroBatchReaderFactory
override def createMicroBatchScan(start: Offset, end: Offset): MicroBatchScan = {
new KafkaMicroBatchScan(
kafkaOffsetReader,
rangeCalculator,
executorKafkaParams,
pollTimeoutMs,
failOnDataLoss,
reportDataLoss,
start.asInstanceOf[KafkaSourceOffset],
end.asInstanceOf[KafkaSourceOffset])
}

override def deserializeOffset(json: String): Offset = {
Expand Down Expand Up @@ -229,23 +179,6 @@ private[kafka010] class KafkaMicroBatchReadSupport(
}
}

private def getSortedExecutorList(): Array[String] = {

def compare(a: ExecutorCacheTaskLocation, b: ExecutorCacheTaskLocation): Boolean = {
if (a.host == b.host) {
a.executorId > b.executorId
} else {
a.host > b.host
}
}

val bm = SparkEnv.get.blockManager
bm.master.getPeers(bm.blockManagerId).toArray
.map(x => ExecutorCacheTaskLocation(x.host, x.executorId))
.sortWith(compare)
.map(_.toString)
}

/**
* If `failOnDataLoss` is true, this method will throw an `IllegalStateException`.
* Otherwise, just log a warning.
Expand Down Expand Up @@ -294,6 +227,88 @@ private[kafka010] class KafkaMicroBatchReadSupport(
}
}

private[kafka010] class KafkaMicroBatchScan(
kafkaOffsetReader: KafkaOffsetReader,
rangeCalculator: KafkaOffsetRangeCalculator,
executorKafkaParams: ju.Map[String, Object],
pollTimeoutMs: Long,
failOnDataLoss: Boolean,
reportDataLoss: String => Unit,
start: KafkaSourceOffset,
end: KafkaSourceOffset) extends MicroBatchScan with Logging {

override def createReaderFactory(): PartitionReaderFactory = {
KafkaMicroBatchReaderFactory
}

override def planInputPartitions(): Array[InputPartition] = {
val startPartitionOffsets = start.partitionToOffsets
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

val endPartitionOffsets = end.partitionToOffsets

// Find the new partitions, and get their earliest offsets
val newPartitions = endPartitionOffsets.keySet.diff(startPartitionOffsets.keySet)
val newPartitionInitialOffsets = kafkaOffsetReader.fetchEarliestOffsets(newPartitions.toSeq)
if (newPartitionInitialOffsets.keySet != newPartitions) {
// We cannot get from offsets for some partitions. It means they got deleted.
val deletedPartitions = newPartitions.diff(newPartitionInitialOffsets.keySet)
reportDataLoss(
s"Cannot find earliest offsets of ${deletedPartitions}. Some data may have been missed")
}
logInfo(s"Partitions added: $newPartitionInitialOffsets")
newPartitionInitialOffsets.filter(_._2 != 0).foreach { case (p, o) =>
reportDataLoss(
s"Added partition $p starts from $o instead of 0. Some data may have been missed")
}

// Find deleted partitions, and report data loss if required
val deletedPartitions = startPartitionOffsets.keySet.diff(endPartitionOffsets.keySet)
if (deletedPartitions.nonEmpty) {
reportDataLoss(s"$deletedPartitions are gone. Some data may have been missed")
}

// Use the end partitions to calculate offset ranges to ignore partitions that have
// been deleted
val topicPartitions = endPartitionOffsets.keySet.filter { tp =>
// Ignore partitions that we don't know the from offsets.
newPartitionInitialOffsets.contains(tp) || startPartitionOffsets.contains(tp)
}.toSeq
logDebug("TopicPartitions: " + topicPartitions.mkString(", "))

// Calculate offset ranges
val offsetRanges = rangeCalculator.getRanges(
fromOffsets = startPartitionOffsets ++ newPartitionInitialOffsets,
untilOffsets = endPartitionOffsets,
executorLocations = getSortedExecutorList())

// Reuse Kafka consumers only when all the offset ranges have distinct TopicPartitions,
// that is, concurrent tasks will not read the same TopicPartitions.
val reuseKafkaConsumer = offsetRanges.map(_.topicPartition).toSet.size == offsetRanges.size

// Generate factories based on the offset ranges
offsetRanges.map { range =>
KafkaMicroBatchInputPartition(
range, executorKafkaParams, pollTimeoutMs, failOnDataLoss, reuseKafkaConsumer)
}.toArray
}

private def getSortedExecutorList(): Array[String] = {

def compare(a: ExecutorCacheTaskLocation, b: ExecutorCacheTaskLocation): Boolean = {
if (a.host == b.host) {
a.executorId > b.executorId
} else {
a.host > b.host
}
}

val bm = SparkEnv.get.blockManager
bm.master.getPeers(bm.blockManagerId).toArray
.map(x => ExecutorCacheTaskLocation(x.host, x.executorId))
.sortWith(compare)
.map(_.toString)
}
}

/** A [[InputPartition]] for reading Kafka data in a micro-batch streaming query. */
private[kafka010] case class KafkaMicroBatchInputPartition(
offsetRange: KafkaOffsetRange,
Expand Down
Loading