Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.benchmark

/**
* Benchmark to measure Avro data sources write performance.
* Usage:
* 1. with spark-submit: bin/spark-submit --class <this class> <spark sql test jar>
* 2. with sbt: build/sbt "avro/test:runMain <this class>"
*/
object AvroWriteBenchmark extends DataSourceWriteBenchmark {
def main(args: Array[String]): Unit = {
/*
Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
Avro writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 2481 / 2499 6.3 157.8 1.0X
Output Single Double Column 2705 / 2710 5.8 172.0 0.9X
Output Int and String Column 5539 / 5639 2.8 352.2 0.4X
Output Partitions 4613 / 5004 3.4 293.3 0.5X
Output Buckets 5554 / 5561 2.8 353.1 0.4X
*/
runBenchmark("Avro")
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.benchmark

/**
* Benchmark to measure built-in data sources write performance.
* By default it measures 4 data source format: Parquet, ORC, JSON, CSV. Run it with spark-submit:
* spark-submit --class <this class> <spark sql test jar>
* Or with sbt:
* build/sbt "sql/test:runMain <this class>"
*
* To measure specified formats, run it with arguments:
* spark-submit --class <this class> <spark sql test jar> format1 [format2] [...]
* Or with sbt:
* build/sbt "sql/test:runMain <this class> format1 [format2] [...]"
*/
object BuiltInDataSourceWriteBenchmark extends DataSourceWriteBenchmark {
def main(args: Array[String]): Unit = {
val formats: Seq[String] = if (args.isEmpty) {
Seq("Parquet", "ORC", "JSON", "CSV")
} else {
args
}

spark.conf.set("spark.sql.parquet.compression.codec", "snappy")
spark.conf.set("spark.sql.orc.compression.codec", "snappy")
/*
Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
Parquet writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 1815 / 1932 8.7 115.4 1.0X
Output Single Double Column 1877 / 1878 8.4 119.3 1.0X
Output Int and String Column 6265 / 6543 2.5 398.3 0.3X
Output Partitions 4067 / 4457 3.9 258.6 0.4X
Output Buckets 5608 / 5820 2.8 356.6 0.3X

ORC writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 1201 / 1239 13.1 76.3 1.0X
Output Single Double Column 1542 / 1600 10.2 98.0 0.8X
Output Int and String Column 6495 / 6580 2.4 412.9 0.2X
Output Partitions 3648 / 3842 4.3 231.9 0.3X
Output Buckets 5022 / 5145 3.1 319.3 0.2X

JSON writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 1988 / 2093 7.9 126.4 1.0X
Output Single Double Column 2854 / 2911 5.5 181.4 0.7X
Output Int and String Column 6467 / 6653 2.4 411.1 0.3X
Output Partitions 4548 / 5055 3.5 289.1 0.4X
Output Buckets 5664 / 5765 2.8 360.1 0.4X

CSV writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 3025 / 3190 5.2 192.3 1.0X
Output Single Double Column 3575 / 3634 4.4 227.3 0.8X
Output Int and String Column 7313 / 7399 2.2 464.9 0.4X
Output Partitions 5105 / 5190 3.1 324.6 0.6X
Output Buckets 6986 / 6992 2.3 444.1 0.4X
*/
formats.foreach { format =>
runBenchmark(format)
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -21,25 +21,14 @@ import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.util.Benchmark

/**
* Benchmark to measure data source write performance.
* By default it measures 4 data source format: Parquet, ORC, JSON, CSV:
* spark-submit --class <this class> <spark sql test jar>
* To measure specified formats, run it with arguments:
* spark-submit --class <this class> <spark sql test jar> format1 [format2] [...]
*/
object DataSourceWriteBenchmark {
trait DataSourceWriteBenchmark {
val conf = new SparkConf()
.setAppName("DataSourceWriteBenchmark")
.setIfMissing("spark.master", "local[1]")
.set("spark.sql.parquet.compression.codec", "snappy")
.set("spark.sql.orc.compression.codec", "snappy")
.set(SQLConf.WHOLESTAGE_CODEGEN_ENABLED.key, "true")

val spark = SparkSession.builder.config(conf).getOrCreate()

// Set default configs. Individual cases will change them if necessary.
spark.conf.set(SQLConf.WHOLESTAGE_CODEGEN_ENABLED.key, "true")

val tempTable = "temp"
val numRows = 1024 * 1024 * 15

Expand Down Expand Up @@ -86,64 +75,24 @@ object DataSourceWriteBenchmark {
}
}

def main(args: Array[String]): Unit = {
def runBenchmark(format: String): Unit = {
val tableInt = "tableInt"
val tableDouble = "tableDouble"
val tableIntString = "tableIntString"
val tablePartition = "tablePartition"
val tableBucket = "tableBucket"
val formats: Seq[String] = if (args.isEmpty) {
Seq("Parquet", "ORC", "JSON", "CSV")
} else {
args
}
/*
Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
Parquet writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 1815 / 1932 8.7 115.4 1.0X
Output Single Double Column 1877 / 1878 8.4 119.3 1.0X
Output Int and String Column 6265 / 6543 2.5 398.3 0.3X
Output Partitions 4067 / 4457 3.9 258.6 0.4X
Output Buckets 5608 / 5820 2.8 356.6 0.3X

ORC writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 1201 / 1239 13.1 76.3 1.0X
Output Single Double Column 1542 / 1600 10.2 98.0 0.8X
Output Int and String Column 6495 / 6580 2.4 412.9 0.2X
Output Partitions 3648 / 3842 4.3 231.9 0.3X
Output Buckets 5022 / 5145 3.1 319.3 0.2X

JSON writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 1988 / 2093 7.9 126.4 1.0X
Output Single Double Column 2854 / 2911 5.5 181.4 0.7X
Output Int and String Column 6467 / 6653 2.4 411.1 0.3X
Output Partitions 4548 / 5055 3.5 289.1 0.4X
Output Buckets 5664 / 5765 2.8 360.1 0.4X

CSV writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
Output Single Int Column 3025 / 3190 5.2 192.3 1.0X
Output Single Double Column 3575 / 3634 4.4 227.3 0.8X
Output Int and String Column 7313 / 7399 2.2 464.9 0.4X
Output Partitions 5105 / 5190 3.1 324.6 0.6X
Output Buckets 6986 / 6992 2.3 444.1 0.4X
*/
withTempTable(tempTable) {
spark.range(numRows).createOrReplaceTempView(tempTable)
formats.foreach { format =>
withTable(tableInt, tableDouble, tableIntString, tablePartition, tableBucket) {
val benchmark = new Benchmark(s"$format writer benchmark", numRows)
writeNumeric(tableInt, format, benchmark, "Int")
writeNumeric(tableDouble, format, benchmark, "Double")
writeIntString(tableIntString, format, benchmark)
writePartition(tablePartition, format, benchmark)
writeBucket(tableBucket, format, benchmark)
benchmark.run()
}
withTable(tableInt, tableDouble, tableIntString, tablePartition, tableBucket) {
val benchmark = new Benchmark(s"$format writer benchmark", numRows)
writeNumeric(tableInt, format, benchmark, "Int")
writeNumeric(tableDouble, format, benchmark, "Double")
writeIntString(tableIntString, format, benchmark)
writePartition(tablePartition, format, benchmark)
writeBucket(tableBucket, format, benchmark)
benchmark.run()
}
}
}
}